• Title/Summary/Keyword: robot systems

Search Result 3,643, Processing Time 0.06 seconds

A servo controller design for a quadruped walking robot (다각 보행 로보트의 서보 제어기 설계)

  • 이연정;여인택;박찬웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.75-78
    • /
    • 1987
  • This paper presents a control algorithm of servo controller for a quadruped walking robot as well as its characteristics and requirements. The control algorithm for propelling and terrain adaptive motion is described. The servo controller is being developed as a sub-project of the national project - "Development of a quadruped walking robot ". And then, this paper focuses on an overview of the current state and future works of this sub-project.b-project.

  • PDF

A Study on The OLP Development and Controller Design for off-line Control of SCARA Robot (스카라 로봇의 오프라인 제어를 위한 OLP 개발 및 제어기설계에 관한 연구)

  • 서운학
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.432-439
    • /
    • 1999
  • In this paper, an off-line programming(OLP) system is presented as the three dimensional graphic simulator and one of the human-robot interface systems for industrial robots. The OLP system has been especially developed to testify robot programs visually using three dimensional geometric modeling and graphics technologies in personal computes. A special feature is its capability of collision detection and of comparing performance of control algorithms. This paper places the focus on the structure and major characteristic of OLP system.

  • PDF

Neural Network Tracking Control of Rigid-tink Electrically-Driven Robot Manipulators (신경 회로망의 RLED 로봇 머너퓰레이터 추적 제어)

  • 정재욱
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.74-74
    • /
    • 2000
  • This paper presents a neural network controller for a rigid-link electrically-driven robot. The proposed controller is designed in conjunction with three neural networks approximating for complicated nonlinear functions. Particularly, the fact, different from conventional schemes, is that the neural network based current observer is used. Therefore, no accurate measurement of the actuator driving current is required. In the proposed controller-observer scheme, the derived weight update rule guarantees the stability of closed-loop system in the sense of Lyapunov. The effectiveness and performance of the proposed method are demonstrated through computer simulation.

  • PDF

Control of Biped Locomotion on A Slippery Surface (미끄러운 노면에 적응하는 2족 보행 로봇의 제어)

  • 권오홍;박종현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.41-41
    • /
    • 2000
  • biped robots are expected to robustly traverse terrain with various unknown surfaces. The robot will occasionally encounter the unexpected events in made-for human environments. The slipping is a very real and serious problem in the unexpected events. The robot system must respond to the unexpected slipping after it has occurred and before control is lost. This paper proposes a reflex control method for biped robots to recover from slipage. Computer simulations with the 6-DOF environment model which consists of nonlinear dampers, nonlinear springs, and linear springs, show that the proposed method is effective in preventing fall-down due to slippage.

  • PDF

Kinematic Modeling of Mobile Robots by Transfer Method of Generalized Coordinates (좌표계 전환기법을 활용한 모바일 로봇의 기구학 모델링)

  • 김도형;김희국;이병주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.44-44
    • /
    • 2000
  • Firstly, kinematic model of various type of wheels which includesskidding and skidding friction are presented. Tend, the transfer method of generalized coordinates which is useful to model the parallel mechanisms, can be applied to mobile robot by including such friction terms. Particularly, by appling the modeling method to mobile robot consisting of two conventional wheels and one caster wheel, forword/reverse kinematic modeling could be obtained without using pseudoinverse solutions.

  • PDF

An Adaptive Control Method of Robot Manipulators using RBFN (RBFN을 이용한 로봇 매니퓰레이터의 적응제어 방법)

  • 이민중;최영규;박진현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.420-420
    • /
    • 2000
  • In this paper, we propose an adaptive controller using RBFN(radial basis function network) for robot manipulators The structure of the proposed controller consists of a RBFN and VSC-1 ike control. RBFN is used in order to approximate かon system, and VSC-like control to guarantee robustness On the basis of the Lyapunov stability theorem, we guarantee the stability for the total system. And the learning law of RBFN is established by the Lyapunov method, Finally, we apply the proposed controller to tracking control for a 2 link SCARA type robot manipulator.

  • PDF

Self-Localization of Mobile Robot Using Single Camera (단일 카메라를 이용한 이동로봇의 자기 위치 추정)

  • 김명호;이쾌희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.404-404
    • /
    • 2000
  • This paper presents a single vision-based sel(-localization method in an corridor environment. We use the Hough transform for finding parallel lines and vertical lines. And we use these cross points as feature points and it is calculated relative distance from mobile robot to these points. For matching environment map to feature points, searching window is defined and self-localization is performed by matching procedure. The result shows the suitability of this method by experiment.

  • PDF

Clean mobile robot for wafer transfer (Wafer 낱장 반송용 이동 로봇의 개발)

  • 성학경;이성현;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.161-161
    • /
    • 2000
  • The clean mobile robot for wafer transfer is AGV that carry each wafer to each equipment. It has wafer handling technology, wafer ID recognition technology, position calibration technology using vision system, and anti-vibration technology. Wafer loading/unloading working accuracy is within ${\pm}$1mm, ${\pm}$3$^{\circ}$. By application of this AGV, we can reduce the manufacturing tack time and bring cost down of equipment.

  • PDF

PEIS-Ecology in multi-robot environments

  • Seo, Beom-Su;Roh, Myung-Chan
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.765-766
    • /
    • 2006
  • The ecology of Physically Embedded Intelligent Systems (PEIS) is a new multi robotic framework conceived by integrating insights from the fields of autonomous robotics and ambient intelligence. A PEIS-Ecology is a network of intelligent robotic devices that can provide the user with assistance, information, communication, and entertainment services. In this paper we introduce the concept of PEIS Ecology, and illustrate a concrete realization of a PEIS-Ecology.

  • PDF