• 제목/요약/키워드: robot sensing

검색결과 300건 처리시간 0.028초

로봇의 이동 및 센싱 불확실성이 고려된 네트워크 기반 로봇 시뮬레이션 프로그램 (Network Based Robot Simulator Implementing Uncertainties in Robot Motion and Sensing)

  • 서동진;고낙용;전세웅;이종배
    • 로봇학회논문지
    • /
    • 제5권1호
    • /
    • pp.23-31
    • /
    • 2010
  • This paper suggests a multiple robot simulator which considers the uncertainties in robot motion and sensing. A mobile robot moves with errors due to some kinds of uncertainties from actuators, wheels, electrical components, environments. In addition, sensors attached to a mobile robot can't make accurate output information because of uncertainties of the sensor itself and environment. Uncertainties in robot motion and sensing leads researchers find difficulty in building mobile robot navigation algorithms. Generally, a robot algorithm without considering unexpected uncertainties fails to control its action in a real working environment and it leads to some troubles and damages. Thus, the authors propose a simulator model which includes robot motion and sensing uncertainties to help making robust algorithms. Sensor uncertainties are applied in range sensors which are widely used in mobile robot localization, obstacle detection, and map building. The paper shows performances of the proposed simulator by comparing it with a simulator without any uncertainty.

틸트 카메라를 이용한 기준 마커 인식 범위 확장을 위한 연구 (Study on Extending Sensing Range of Fiducial Marker using Tilt Camera)

  • 양견모;곽정훈;서갑호
    • 로봇학회논문지
    • /
    • 제18권2호
    • /
    • pp.197-202
    • /
    • 2023
  • This paper studies the method to extend the sensing range of a fiducial maker using a tilt camera. In the system that uses a fiducial marker to estimate their position on a map, the sensing range of the marker is an important issue. Although there are markers around, a robot with a fixed camera often misses nearby markers in the case that the viewing angle of the camera does not cover the sensing range of the marker. If the robot adjusts the viewing angle of a camera by adjusting the position information of the markers, this problem will be solved. The contribution of this paper is as follows. 1) Structural considerations for the tilting module of cameras attached to robots. 2) Tilting module control method considering the position of a marker and a robot. 3) Finally, verification of the differences in the sensing range of markers between the proposed system and the previous system.

시각을 이용한 이동 로봇의 강건한 경로선 추종 주행 (Vision-Based Mobile Robot Navigation by Robust Path Line Tracking)

  • 손민혁;도용태
    • 센서학회지
    • /
    • 제20권3호
    • /
    • pp.178-186
    • /
    • 2011
  • Line tracking is a well defined method of mobile robot navigation. It is simple in concept, technically easy to implement, and already employed in many industrial sites. Among several different line tracking methods, magnetic sensing is widely used in practice. In comparison, vision-based tracking is less popular due mainly to its sensitivity to surrounding conditions such as brightness and floor characteristics although vision is the most powerful robotic sensing capability. In this paper, a vision-based robust path line detection technique is proposed for the navigation of a mobile robot assuming uncontrollable surrounding conditions. The technique proposed has four processing steps; color space transformation, pixel-level line sensing, block-level line sensing, and robot navigation control. This technique effectively uses hue and saturation color values in the line sensing so to be insensitive to the brightness variation. Line finding in block-level makes not only the technique immune from the error of line pixel detection but also the robot control easy. The proposed technique was tested with a real mobile robot and proved its effectiveness.

Simulation of Mobile Robot Navigation based on Multi-Sensor Data Fusion by Probabilistic Model

  • Jin, Tae-seok
    • 한국산업융합학회 논문집
    • /
    • 제21권4호
    • /
    • pp.167-174
    • /
    • 2018
  • Presently, the exploration of an unknown environment is an important task for the development of mobile robots and mobile robots are navigated by means of a number of methods, using navigating systems such as the sonar-sensing system or the visual-sensing system. To fully utilize the strengths of both the sonar and visual sensing systems, In mobile robotics, multi-sensor data fusion(MSDF) became useful method for navigation and collision avoiding. Moreover, their applicability for map building and navigation has exploited in recent years. In this paper, as the preliminary step for developing a multi-purpose autonomous carrier mobile robot to transport trolleys or heavy goods and serve as robotic nursing assistant in hospital wards. The aim of this paper is to present the use of multi-sensor data fusion such as ultrasonic sensor, IR sensor for mobile robot to navigate, and presents an experimental mobile robot designed to operate autonomously within indoor environments. Simulation results with a mobile robot will demonstrate the effectiveness of the discussed methods.

Real-Time Sensing 및 4-bar linkage를 이용한 격투기로봇 개발 (Development of War-robot using Real-Time Sensing and 4-bar linkage)

  • 최은재;박세환;임상헌;정진만;정원지
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.873-876
    • /
    • 2001
  • Micro-robots using microprocessor are mainly classified as line-tracer, micro-mouse, and war-robot. This paper presents the development of the war-robot mechanism with vehicle-style using RC-servo motors and actuators using 4-bar linkage and infrared sensors. Especially the algorithm of conquering other war-robots is proposed based on the skill of belly-throw of Korean wrestling.

  • PDF

Development of Potential Function Based Path Planning Algorithm for Mobile Robot

  • Lee, Sang-Il;Kim, Myun-Hee;Oh, Kwang-Seuk;Lee, Sang-Ryong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2325-2330
    • /
    • 2005
  • A potential field method for solving the problem of path planning based on global and local information for a mobile robot moving among a set of stationary obstacles is described. The concept of various method used path planning is used design a planning strategy. A real human living area is constructed by many moving and imminence obstacles. Home service mobile robot must avoid many obstacles instantly. A path that safe and attraction towards the goal is chosen. The potential function depends on distance from the goal and heuristic function relies on surrounding environments. Three additional combined methods are proposed to apply to human living area, calibration robots position by measured surrounding environment and adapted home service robots. In this work, we proposed the application of various path planning theory to real area, human living. First, we consider potential field method. Potential field method is attractive method, but that method has great problem called local minimum. So we proposed intermediate point in real area. Intermediate point was set in doorframe and between walls there is connect other room or other area. Intermediate point is very efficiency in computing path. That point is able to smaller area, area divided by intermediate point line. The important idea is intermediate point is permanent point until destruction house or apartment house. Second step is move robot with sensing on front of mobile robot. With sensing, mobile robot recognize obstacle and judge moving obstacle. If mobile robot is reach the intermediate point, robot sensing the surround of point. Mobile robot has data about intermediate point, so mobile robot is able to calibration robots position and direction. Third, we gave uncertainty to robot and obstacles. Because, mobile robot was motion and sensing ability is not enough to control. Robot and obstacle have uncertainty. So, mobile robot planed safe path planning to collision free. Finally, escape local minimum, that has possibility occur robot do not work. Local minimum problem solved by virtual obstacle method. Next is some supposition in real living area.

  • PDF

Simultaneous Localization and Mobile Robot Navigation using a Sensor Network

  • Jin Tae-Seok;Bashimoto Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권2호
    • /
    • pp.161-166
    • /
    • 2006
  • Localization of mobile agent within a sensing network is a fundamental requirement for many applications, using networked navigating systems such as the sonar-sensing system or the visual-sensing system. To fully utilize the strengths of both the sonar and visual sensing systems, This paper describes a networked sensor-based navigation method in an indoor environment for an autonomous mobile robot which can navigate and avoid obstacle. In this method, the self-localization of the robot is done with a model-based vision system using networked sensors, and nonstop navigation is realized by a Kalman filter-based STSF(Space and Time Sensor Fusion) method. Stationary obstacles and moving obstacles are avoided with networked sensor data such as CCD camera and sonar ring. We will report on experiments in a hallway using the Pioneer-DX robot. In addition to that, the localization has inevitable uncertainties in the features and in the robot position estimation. Kalman filter scheme is used for the estimation of the mobile robot localization. And Extensive experiments with a robot and a sensor network confirm the validity of the approach.

자율주행차량과 로봇의 안내를 위한 자계위치인식시스템 (Magnetic Position Sensing System for Autonomous Vehicle and Robot Guidance)

  • 정영윤;김근모;유영재
    • 한국지능시스템학회논문지
    • /
    • 제17권2호
    • /
    • pp.214-219
    • /
    • 2007
  • 본 논문은 자율주행차량과 로봇의 안내를 위한 새로운 자계위치인식방법을 제안한다. 차량 및 로봇이 자율주행을 하기 위해서는 이동경로상의 현재 위치를 인식하는 것이 기본적으로 요구된다. 자계기반 자율주행차량과 로봇은 자성체로부허 발생되는 자계를 계측하여 위치정보를 검출한다. 이러한 자계위치인식시스템에서 지구자계는 기본적인 왜란으로 작용한다. 본 논문에서는 지구자계의 영향을 제거하기 위해 다수의 1축 자계센서 열을 구성하였으며, 자계센서 출력의 선형동작영역을 이용하여 정밀한 위치인식시스템을 개발하였다. 제안하는 방법이 자율주행차랑과 로봇의 안내를 위해 사용 가능함을 실험을 통하여 검증하였다.

Self Localization of Mobile Robot Using Sonar Sensing and Map Building

  • Kim, Ji-Min;Lee, Ki-Seong;Jeong, Tae-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1931-1935
    • /
    • 2004
  • A location estimate problem is critical issues for mobile robot. Because it is basic problem in practical use of the mobile robot which do what, or move where, or reach an aim. Already there are many technologies of robot localization (like GPS, vision, sonar sensor, etc) used on development. But the elevation of accurateness was brought the problem that must consider an increase of a hardware cost and addition electric power in each ways. There is the core in question to develop available and accurate sensing algorithm though it is economical. We used a ultrasonic sensor and was going to implement comparatively accurate localization though economical. Using a sensing data, we could make a grid map and estimate a position of a mobile robot. In this paper, to get a satisfactory answer about this problem using a ultrasonic sensor.

  • PDF

자동 굴삭을 위한 스토로크 센싱 실린더 위치 제어 (The Position Control of Stroke Sensing Cylinder for Automatic Excavation)

  • 손구영;심재군;양순용;이병룡;안경관
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.475-480
    • /
    • 2002
  • The Field Robot means the machinery applied for outdoor tasks in construction, agriculture and undersea etc. In this study, to field-robotize a hydraulic excavator that is mostly used in construction working, we developed an interfacing hardware part of stroke sensing cylinder using magnetic sensor and estimated its performance. It is illustrated by experiment that the proposed control system by stroke sensing cylinder gives good performances in the position control

  • PDF