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Abstract

Localization of mobile agent within a sensing network is a fundamental requirement for many applications, using networked
navigating systems such as the sonar-sensing system or the visual-sensing system. To fully utilize the strengths of both the sonar
and visual sensing systems, This paper describes a networked sensor-based navigation method in an indoor environment for an
autonomous mobile robot which can navigate and avoid obstacle. In this method, the self-localization of the robot is done with a
model-based vision system using networked sensors, and nonstop navigation is realized by a Kalman filter-based STSF(Space and
Time Sensor Fusion) method. Stationary obstacles and moving obstacles are avoided with networked sensor data such as CCD
camera and sonar ring. We will report on experiments in a hallway using the Pioneer-DX robot. In addition to that, the
localization has inevitable uncertainties in the features and in the robot position estimation. Kalman filter scheme is used for the
estimation of the mobile robot localization. And Extensive experiments with a robot and a sensor network confirm the validity of

the approach.
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1. Introduction

For mobile robots to operate efficiently in a human
environment, they need to be able to navigate efficiently and
to avoid collisions. Therefore, taking the safety factor into
consideration, "collision avoidance" would essentially form the
basic behavior of all behavior-based autonomous robots. The
sonar sensing system has traditionally been used for collision
avoidance in mobile robots [1],[2]. It is cost effective and
relatively quick in response. Processing is not time consuming
either. Recently, however, with the reduction in size of video
cameras and the increase in computing speed of computers,
the use of visual sensing has become popular too [3],[4].

In what has become a fairly well-researched approach to
networked multi-sensor (sonar and vision) based navigation for
mobile robots, a robot is provided with an environmental map
and a path to follow. The important function of vision-based
processing in this case consists of "self-localization." By
comparing these prerecorded images with the camera images
taken during navigation, the robot is able to determine its
location. Other research contributions that are
relevant to mobile robot localization include [4],[5].

In this paper, we will present an networked multi-sensor
based process for mobile robots that is capable of
simultaneously navigating and avoiding stationary obstacles

previous
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using monocular camera images. While the self-localization
part of the process is the same as the FINALE system[7],
what distinguishes the work reported in this paper is that we
are now able to give to the robot a vision-based obstacle
avoidance capability at the In the current
implementation, this obstacle-avoidance capability is limited to
the detection and avoidance of stationary obstacles. This is
owing to the limitations of the computing hardware available
to the robot. Therefore, moving obstacles must still be
detected with ultrasonic sensors.

In this paper, we focused our endeavour on the concurrent
network sensor application and localization by adopting the
feature representation method and absolute localization method
for the robot autonomy. And in the midst of concurrent
processing, through the quantification for each process, we
showed the performance improvement and systematic
relationship between the map building and localization. as a
general approach of sensor fusion, and STSF (space and time
sensor fusion){8] scheme is applied for sensor data structure
and applied to the landmark identification for mobile robot
navigation.

same time.

2. Active sensor fusion system

A block diagram of the active sensor fusion system is
shown in Figure 1. Basically, there are four modules: the

sonar sensor module, the visual module, the situation
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assessment module and the movement module. These modules
are individually sub-divided into sub-modules as shown in
table 1. The first two main modules are "sensing modules"
and all the data collected by these two modules are relayed to
the situation assessment module, which will decide on an
appropriate action or reaction (based on past and present data)
and which will in turn, pass an order to the movement
module[9].
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! !
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Target State Update Obstacle Avoidance
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Fig. 1. Active Sensor Fusion System

Table 1. Modules of the sensor fusion system.

Main modules Sub-modules

Visual Landmark Detection Visual Confirmation

Sonar Extract RCDs Sonar Confirmation

Situation Assessment Matching by Sonar and Vision

Movement Map building Navigation

3. Localization from the multi-sensor data

3.1 Mobile robot localization

Localization if the process of determining the position of
the robot with respect to a global reference frame. Our
objective here is to achieve comparable performance to
commercially available artificial beacon systems [9] without
modifying the environment, by using the naturally occurring
structure of the environment.

When the mobile robot starts from the known initial point,
in the view of dead reckoning, it collects the data from the
motor encoder and angle potentiometer. And then the
extracted position information is used to generate virtual map
with the simulated RCDs. These simulated RCDs are used
together with real RCD data for map matching process. In
other words, when the real sonar data is acquired at time step
k, the position is estimated for the most similar pattern of
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virtual RCD and based on that position, the virtual RCD
pattern is predicted at time step k+1 and then the real RCD
pattern at time step k+1 is compared with the virtual RCD
pattern. This routine is continuously processed in chain type
as shown in Fig. 3.
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Fig. 2. Localization using Measured and Predicted Data

With reference to Figure 2, the vector x(k)=(x(k), y(k), 8(k))
is the robot's position and angle at time % Four geometric
beacons are in view to a servo-mounted sonar at time k and
time k+1: plane P,, corner P,, plane P; and cylinder Ps. The
z, (k) and z3( A are the shortest
distance from the sensor to planes P; and P; at time k. the

sonar measurements

measurement z,( k) is the distance from the sensor to

corner P, at time k. Measurement 24 ( &) is the distance to
the central axis of cylinder P4 less the radius of the cylinder.
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Fig. 3. Localization Process Chained with Map Building

Landmark Location

In the localization process, we adapted the Extended
Kalman Filter. The position and angle of the robot can be
described x(k)=(x(k), y(k), B(k))T as shown in Fig. 2. Initially
the robot starts from the known position with the prior
modelled information about the geometric environment features
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{ p, | 1<t< nT} and acquires the measured data

z;( k+ Devery sampling time. The purpose of the EKF for

the localization is to compute the wupdated estimate

X (k+1]k+1) from the information of environment features

P, and measured sensor data z,{ £+ 1). Generally Kalman
Filter is based on 2 models, plant model and measurement
model.

3.2 Sensor Fusion Transformation
Let us define the k-th moment data set provided by i-th

sensor as, z;{ %), and the k-th measurement vector as x(k).
Then the conventional sensor fusion technique provides the
measurement as

R(B=3 W, x,® )
where x,(k)= H, z;(khe R”,,
H; represents transformation from the sensory data to the

measurement  vector, and W, € R ™*" represents the

weighting value for i-th sensor.

Note that in the measurement of z;( %), the low-level
fusion might be applied with multiple sets of data with known

statistics[8]. The determination of H; is purely dependent on

the sensory information and the decision of W; can be done
through the sensor fusion process. Later this measured data
are provided to the linear model of the control/measurement
system as current state vector, x (%). In this approach, we
propose a multi-sensor data fusion using sensory data,

TZi(j), as

(0= W% P120)) @)
1 1

i=

where 71
Note that when each of sensor information can provide the
measurement vector, that is, the redundant case, 72;(7) can

be expanded as
’[Zl-(j)= TjJFHiZi(j) 3

where T, represents the homogeneous transformation from
the location of the j-th to the k-th measurements.

However, when the multi-sensors are utilized in- the
complementary mode, the transformation relationship cannot
be defined uniquely; instead it will be defined depending on
the data constructing algorithm from the measurements. For
example, a single image frame captured by a camera on a
mobile robot cannot provide the distance to an object until the
corresponding object image is provided again from a different
location. Fig. 4 illustrates the concept of this multi-sensor
temporal data fusion. Estimation of parameter may provide the
measurement vector at each sampling moment.
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Fig. 4 Concept of Space and Time Sensor Fusion

3.3 Robot Position Prediction
First, using the plant model and knowledge of the control

input wu (&), we predict the robot's new location at time step
k+1.

X+ 1R = £( X(AR), u(k), 4

We next compute P (£-+ 1|k), the variance associated with
this prediction:

P(k+1A= vi P(klR) Vi + Q&) (5)

where, vf is the Jacobian of the state transition function

f( (AR, u(k)
updated estimate X (AA).

obtained by linearizing about the

[1 0 —T(hsin(B(klk)]

vE=10 1 T(Acos(B(klA) 6)

| I
L0 0 1 1

The next step is to obtain the observation set Z(k+1) from
the vehicle's sensors from the new vehicle location. This is

comprised of #; observed RCDs. Next, for each sensor we

use the predicted robot location X ( %+ 1£) and the current
map M(k) to generate predicted observations of each target
P, .

z;(k+1)= h,( p,, X(k+ 1k, by),
i=1,...,n, (7
to yield the set of predictions

2+ ={ Z,(k+1)|1<i<n,) (8)

which contains 7, predicted RCDs. The predicted state
estimate X (% + 1) is used to compute the measurement

Jacobian V h; for each prediction. For planes,

163



International Journal of Fuzzy Logic and Intelligent Systems, vol. 6, no. 2, June 2006

; -~ K
Vhl:pvg —sin{py |

| ¥ sin(B(k+ 11k —p, | ©)

| — v cos(B(k+ 11k —py

while for corers, and edges

[ %(k+ 1B +x cos(Bk+ 11RN]"
i — v sin(B(k+ 1B —p)!

vhe=-L | 50kt 1R +x sin(@k+110)| (10
Vy'scos(’a(k+1|k)—py)
! i
L 0 1

where, d is the distance from the predicted location of sensors

to the point (2, 0,).

3.4 Matching and Estimation

The goal of the matching procedure is to produce an
assignment from measurements 2z,;(k) to targets D, For
each prediction and observation corresponding to the same

sensor s, we first compute the innovation v, (R,

v kD= z;(k+1)— Z;(k+1)]

=[ z;(k+1D— h,;( p,, X(k+1|)] (11)

If prediction i and observation j correspond to different
v, {k+1) is set to infinity. The
innovation covariance can be found by linearizing Equation
(3) about the prediction, squaring, and taking expectations to
yield

sensors, the innovation

S, (k+D=Elv(k+Dol(r+1)]
= vh,P(k+11k) vh'(k+1)+ R;(k+1) (12)

A validation gate is used to determine the correspondence
between predictions and observations [10]:

v (k+1) S, (et Dol(k+1) < g° (13)

This equation is used to test each sensor observation

z;(k+1) for membership in the validation gate for each
prediction measurement. When a single observation falls in a
validation gate, we get a successful match.

The final step is to use successfully matched predictions
and observations to compute X ( %+ 1k+1), the updated
robot location estimate. To do so we use a parallel update
procedure [11]. We first stack the validated measurements

z;(k+1) into a single vector to form z(k+1), the
composite measurement vector for time k+1, and designate the
v(k+1). stack  the

v h; for each validated measurement

composite  innovation Next, we

measurement Jacobians
together to form the composite measurement Jacobian v h.

Using a stacked noise vector R (k+1)=diagl R,;(£+1)],

we then compute the innovation covariance

S(k+1) as in eq. (12). We then utilize the well-known

composite
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result [10] that the Kalman gain can be written as

W(k+1)= Plo(k+11k) vh'S T(k+1)] (14)
to compute the updated robot position estimate
x(k+1lk+1)=x(k+ 1D+ W(k+Do(k+1) (15
with associated variance
P (k+1lk+1)= Pk +1 k) (16)

— W (k+1) S(k+1) Wi(k+1)

4. Experiments setup and results

4.1 Mobile robot system and environment

After satisfactory simulation performance, the proposed
navigation control system has been implemented and tested in
a laboratory environment on a Pioneer-DX robot equipped
with a CCD camera and ultrasonic sensor ring (Fig. 5) [11].
This robot, which is manufactured by ActivMedia Robotics, is
a differentially driven platform configured with two drive
wheels and one swivel caster for balance. Each wheel is
driven independently by a motor with 19.5:1 gear ratio which
enables the robot to drive at a maximum speed of 1.2 m/s
and climb a 25% grade. The proposed system was prepared
using fuzzyTECH software, which generated C++ code that
was implemented on the Pioneer-DX [11].

Fig. 5. Pioneer-DX Mobile Robot and Active Camera System

Ultrasonic sensor is good in distance measurement of the
obstacles, but it also suffers from specular reflection and
insufficient directional resolution due to its wide beam
opening-angle. So, we use a sensor fusion method to decide
the distance and width of obstacles and avoid them during the
navigation. Pioneer-DX examines whether measured value is
data of distance to real obstacle or distance to its shadow. If
difference of measured data by vision and ultrasonic sensor is
within the error tolerance, Pioneer-DX uses measured data by
vision sensor as distance to obstacle. Otherwise, Pioneer-DX
uses measured data by vision sensor as distance to obstacle.
Fig. 6 depicts sensing coverage of vision and ultrasonic sensor
used this experiment. Ultrasonic sensor can detect obstacles
within 7m and Vision system can detect obstacles within the
range of between 130cm and 870cm.



Simultaneous Localization and Mobile Robot Navigation using a Sensor Network

- Visual |

|\ sensing %

£ * {
y Sonar /
\sensing

Sonar \ Sonar
sensing sensing
\

Fig. 6. Sensing Coverage of Vision and Ultrasonic Sensor

4.2 Mobile robot Navigation

Kalman-based STSF have first been tested with experiment
to show the usefulness of proposed method in two
environments case 1, case 2 respectively. Starting at (0.3m,
S5m, 0 degree), a virtual robot was driven around a virtual
square corridor one time. The walls in the artificial
environment are denoted by the real map, IRL corridor of
PNU.

In each round, the robot stops a total of 12 times to rescan
the environment. The size of given map is 12m X 8m, the
total distance traveled is 12 + 8=20 meters, and the total
number of scanning points is 38. The position and the
direction of navigation at all stops is shown in Fig. 7. This
result demonstrates one of many successful experiments. The
algorithm is very effective in escaping local minima
encountered in laboratory environments. And the results are
compared to show the superiority of the proposed scheme.
The robot was allowed to move keeping the distance between
robot and obstacles constant at the region, AT and BT. The
region BT, shows the improvement in steering at corner. And
the simulation experiments show that a mobile robot, utilizing
our scheme, can avoid obstacles and reach a given goal
position in the workspace of a wide range of geometrical
complexity. Experiments results using Kalman-based STSF,
show the robot can avoid obstacles (boxes and trash can) and
follow the wall.

The mobile robot navigates along a corridor with 3m width
and with some obstacles as shown in Fig. 7. It demonstrates that
the mobile robot avoids the obstacles intelligently and follows
the corridor to the goal. Also notice that especially at the region
AT, the errors of the robot position converse to zero as the
same reason, referring to the simulation result and experimental
result in Fig. 7(a) and Fig. 7(b) represent the reference of robot
direction produced by the proposed Kalman-based STSF.
Finally, the robot is tested to follow the whole trajectory from
start position to final position as shown in Fig. 7. The
simulation and experimental results of the robot status under
such control strategy are given in Fig. 8 and Fig. 9.

As compared to Fig. 8, the response of the position is
reasonably smooth, whereas the orientation @ continues to be
very noisy during the sampling step 30. This is due to
distortions of the images caused by the brightness of light and
sonar reflection's noise from wall. During the sampling step of
90 ms, the position error is at most 120 mm, and the
orientation error is up to 10 degrees.

(b) Navigation in a corridor, case 2
Fig. 7. Experiment Results used Sensor Network

In future research efforts, it is necessary to examine the
influence of the mobile robot, which maintains a flexible
distance between the robot and the obstacles. In the
environment such as factory and office, since a
walking-human trajectory is newly generated at every step, it
is considered to be a function of time. Therefore, the
application of navigation control is effective.

5. Conclusions

In this paper, we have presented a sensor fusion-based
navigational system with ultrasonic sensor and vision sensor
for mobile robots that is also capable of avoiding at least the
stationary obstacles using vision data and tested it
experimentajly on an IRL-2001 mobile robot. By using a
combination of model-based vision for seif-localization;
position updating to cope with the time delays associated with
landmark image processing; using vision data for not only
self-localization but also for the calculation of directions of
safe passage in the presence of obstacles; and ultrasonic
sensors for the detection of close-range moving obstacles; we
have created a navigational system that makes optimum use of
all the sensors for smooth and continuous navigation in indoor
environments. Based on these results, further experiments will
aim at applying the proposed tracking technigue to the
multi-sensor fusion scheme which is applied to the control of
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a mobile robot in an unstructured environment. The
Kalman-based STSF will be applied for conducting on
landmark based real-time robot guidance, including visual
servo control of the Pioneer-DX mobile robot for autonomous
navigation.
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