• Title/Summary/Keyword: robot foot

Search Result 145, Processing Time 0.027 seconds

A Study on Robot Arm Control System using Detection of Foot Movement (발 움직임 검출을 통한 로봇 팔 제어에 관한 연구)

  • Ji, H.;Lee, D.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.1
    • /
    • pp.67-72
    • /
    • 2015
  • The system for controlling the robotic arm through the foot motion detection was implemented for the disabled who not free to use of the arm. In order to get an image on foot movement, two cameras were setup in front of both foot. After defining multiple regions of interest by using LabView-based Vision Assistant from acquired images, we could detect foot movement based on left/right and up/down edge detection within the left/right image area. After transferring control data which was obtained according to left/right and up/down edge detection numbers from two foot images of left/right sides through serial communication, control system was implemented to control 6-joint robotic arm into up/down and left/right direction by foot. As a result of experiment, we was able to get within 0.5 second reaction time and operational recognition rate of more 88%.

  • PDF

A study on the control for impactless gait of biped robot (이족보행로봇의 비충격 걸음새를 위한 제어에 관한 연구)

  • 박인규;김진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.536-539
    • /
    • 1997
  • This paper presents a three dimensional modeling and a trajectory generation for minimized impact walking of the biped robot. Inverse dynamic analysis and forward dynamic analysis are performed considering impact force between the foot and ground for determining the actuator capacity and for simulating the proposed biped walking robot. Double support phase walking is considered for close to human's with adding the kinematic constraints on the one of the single support phase.

  • PDF

Generation of Walking Trajectory of Humanoid Robot using CPG (CPG를 이용한 휴머노이드 로봇 Nao의 보행궤적 생성)

  • Lee, Jaemin;Seo, Kisung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.360-365
    • /
    • 2013
  • The paper introduces dynamic generation technique of foot trajectories using CPG(Central Pattern Generator). In this approach, the generated foot trajectories can be changeable according to variable outputs of CPG in various environments, because they are given as mapping functions of the output signals of the CPG oscillators. It enables to provide an adaptable foot trajectory for environmental change. To demonstrate the effectiveness of the proposed approach, experiments on humanoid robot Nao is executed in the Webot simulation. The performance and motion features of CPG based approach is analyzed.

Classification of Obstacle Shape for Generating Walking Path of Humanoid Robot (인간형 로봇의 이동경로 생성을 위한 장애물 모양의 구분 방법)

  • Park, Chan-Soo;Kim, Doik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.169-176
    • /
    • 2013
  • To generate the walking path of a humanoid robot in an unknown environment, the shapes of obstacles around the robot should be detected accurately. However, doing so incurs a very large computational cost. Therefore this study proposes a method to classify the obstacle shape into three types: a shape small enough for the robot to go over, a shape planar enough for the robot foot to make contact with, and an uncertain shape that must be avoided by the robot. To classify the obstacle shape, first, the range and the number of the obstacles is detected. If an obstacle can make contact with the robot foot, the shape of an obstacle is accurately derived. If an obstacle has uncertain shape or small size, the shape of an obstacle is not detected to minimize the computational load. Experimental results show that the proposed algorithm efficiently classifies the shapes of obstacles around the robot in real time with low computational load.

Analysis of Multi-Chained and Multiple Contact Characteristics of Foot Mechanisms in Aspect of Impulse Absorption (다수 체인과 다중 접촉 성격을 지닌 발 메커니즘에 대한 충격량 흡수 기반 해석)

  • Seo, Jong-Tae;Oh, Se Min;Yi, Byung-Ju
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.2
    • /
    • pp.161-172
    • /
    • 2017
  • Foot mechanisms play the role of interface between the main body of robotic systems and the ground. Biomimetic design of the foot mechanism is proposed in the paper. Specifically, multi-chained and multiple contact characteristics of general foot mechanisms are analyzed and their advantages are highlighted in terms of impulse. Using Newton-Euler based closed-form external and internal impulse models, characteristics of multiple contact cases are investigated through landing simulation of an articulated leg model with three kinds of foot. It is shown that in comparison to single chain and less articulated linkage system, multi-chain and articulated linkage system has superior characteristic in terms of impulse absorption as well as stability after collision. The effectiveness of the simulation result is verified through comparison to the simulation result of a commercialized software.

A study of Human robot Walking Method Using Zigbee Sensor Network (센서 네트워크를 이용한 2족 보행 로봇의 워킹 방법에 관한 연구)

  • Shin, Dae-Seob;Lee, Hyeong-Cheol
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.375-377
    • /
    • 2009
  • This paper researched the algorithm of robot's walking and action on the basis of robot studied and made at our laboratory and studied how to efficiently control the robot joints by developing wireless Digital Servo Motor using Zigbee Sensor Network Module which is using at wide part recently. I realized the stable walking by adopt Press Sensor at the bottom of robot foot to get stability of walking. Also I let the algorithm calculate the robot movement to make the joint motion and monitored the robot walk to its motion. At this Paper, I studied the method organizing the motion by the each robot walking and measuring the torque applying to the joint. And I also knew that it is possible to make its control and construct hardware more conveniently than them of the existing studied and controling 2Legs Walking Robot by applying it at walking robot and developing wireless servo motor by Zirbee Sensor Network.

  • PDF

Modeling and Analysis of Robotic Foot Mechanism Based on Truss Structure (트러스 구조를 기반으로 한 로봇 발 메커니즘 모델링 및 특성 분석)

  • Kim, Byoung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.347-352
    • /
    • 2012
  • This paper presents a robotic foot mechanism based on truss structure for walking robots and analyzes its effectiveness for compliant walking. The specified foot mechanism has been modeled by observing the structure and behavior of human foot. The frame of bone used in the human foot is considered as a truss, and the ligaments of the human foot are represented as a simple stiffness element. So such a robotic foot has an advantage to moderate the impact of foot when a walking robot takes a step. As a result, it is practically expected that the proposed robotic foot mechanism can contribute to reduce the physical fatigue of walking robots.

Effect of Hallux Point Insole on Foot Contact Area and Pressure (할룩스 포인트 인솔이 발의 접촉면적 및 압력에 미치는 영향)

  • Lee, Su-Kyong;Ahn, Su-Hong;Kim, Yong-Woon;Yang, Ki-Eun
    • PNF and Movement
    • /
    • v.19 no.2
    • /
    • pp.233-242
    • /
    • 2021
  • Purpose: The purpose of this study was to determine the changes in foot contact area and pressure when walking with a functional insole that emphasizes the Hallux point as compared to a general insole. Methods: In this study, an experiment was conducted to investigate changes in plantar pressure and contact area for a functional insole that emphasized the Hallux point as compared to a general insole. A lower extremity robot was used for walking reproduction. First, the gait sequence according to the two insoles was determined through a randomized controlled trial comparison. According to the sequence procedure, the insole was attached to the shoe and then worn on the right side of the lower extremity robot for gait reproduction at a normal gait speed of 20 steps per minute. After programming the robot to walk, the experiment was carried out. The result value was determined by averaging the pressure and area data of the fore and rear foot measures after walking at 20 steps per minute. Results: The functional insole that emphasized the hallux point significantly increased the forefoot and rearfoot contact area (p < 0.05) and significantly decreased the forefoot and rearfoot contact pressure (p < 0.05) compared to the general insole. Conclusion: A functional insole that emphasizes the hallux point does not collapse the medial longitudinal arch during gait, increasing foot stability and reducing fatigue. Thus, this functional insole needs to be widely used clinically.

Kinesiology Based Human-like Walking Pattern Design for a Bipedal Robot (인체운동학에 기반한 이족로봇의 인간형 걸음새 설계)

  • Park, Jin-Hee;Kwon, Sang-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.7
    • /
    • pp.659-667
    • /
    • 2011
  • The study of bipedal robot is towards similar shape and function with human. In this paper, we propose a human-like walking pattern compatible to the flexible foot with toe and heel structure. The new walking pattern for a bipedal robot consists of ZMP, center of mass (CoM), and ankle trajectory and is drawn by considering human kinesiology. First, the ZMP trajectory moves forward without stopping at a point even in the single support phase. The corresponding CoM trajectory to the ZMP one is derived by solving differential equations. As well, a CoM trajectory for the vertical axis is added by following the idea of human motion. The ankle trajectory closely mimics the rotational motion of human ankles during taking off and landing on the ground. The advantages of the proposed walking pattern are demonstrated by showing improved stability, decreased ankle torque, and the longer step length capability. Specifically, it is interesting to know that the vertical CoM motion is able to compensate for the initial transient response.

Redundancy Trajectory Generation for Biped Robot Manipulators (2족 보행로봇을 위한 여유자유도 궤적 생성)

  • Yeon, Je-Sung;Park, Jong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1014-1022
    • /
    • 2009
  • A biped robot in locomotion can be regarded to be kinetically redundant in that the link-chain from its foot on the ground to its swing foot has more degrees of freedom that needed to realize stable bipedal locomotion. This paper proposes a new method to generate a trajectory for bipedal locomotion based on this redundancy, which directly generates a locomotion trajectory at the joint level unlike some other methods such as LIPM (linear inverted-pendulum mode) and GCIPM (gravity-compensated inverted-pendulum mode), each of which generates a trajectory of the center of gravity or the hip link under the assumption of the dominance of the hip-link inertia before generating the trajectory of the whole links at the joint level. For the stability of the trajectory generated in the proposed method, a stability condition based on the ZMP (zero-moment point) is used as a constraint as well as other kinetic constraints for bipedal motions. A 6-DOF biped robot is used to show how a stable locomotion trajectory can be generated in the sagittal plane by the proposed method and to demonstrate the feasibility of the proposed method.