• Title/Summary/Keyword: roadbed

Search Result 234, Processing Time 0.033 seconds

A Study on the Building Information Modeling Collaboration Strategy for Railway Infrastructure - Case Study and Survey - (철도 인프라 BIM 협업 전략에 관한 연구 - 싱가포르 사례 및 국내 전문가 설문조사를 기반으로 -)

  • Kim, Seong-Ah;Kim, Jin-Man;Shin, Min-Ho
    • Journal of KIBIM
    • /
    • v.12 no.4
    • /
    • pp.116-127
    • /
    • 2022
  • Building Information Modeling, which was applied mainly in the construction sector, is expanding to the road sector, and the government recently recommends preparing individual application guidelines considering the characteristics of detailed fields such as railways, ports, and complexes through BIM implementation guidelines. Compared to general construction projects, a lot of the works such as signals, electricity, and power, and the railway BIM 2030 roadmap has been presented to apply BIM to railway construction projects that require business consultation and work environment review with various local governments, and pilot projects are in operation. Unlike a general building, in which the construction begins after the detailed design is completed, in the railway project, the detailed design of other works proceeds along with the roadbed construction. Because construction and design work together, railways need to coordinate detailed engineering interfaces such as trajectories, signals, and power, and the application of BIM in design interface coordination has the advantage of maximizing the effectiveness of pre-review. Overseas railway construction projects actively used BIM to adjust design interfaces and had a collaboration process to modify BIM models and create construction details from the revised models through regular meetings with suppliers. Therefore, this study aims to derive the factors necessary for establishing a BIM collaboration environment based on a survey of practitioners as a preliminary step for establishing the BIM collaboration process of the railway construction project.

Experimental Evaluation of Particulate-matter Filtration Performance of a Bottom Ash-Silica Sand Mixture (석탄 저회-규사 필터의 입자상물질 여과 성능 실험적 평가)

  • Lee, Dong-Hyun;Lee, Hong-Kyoung;Lee, Yun-Jae;An, Jaehun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.6
    • /
    • pp.41-47
    • /
    • 2022
  • Permeable pavement technology allows the penetration of rainfall into the roadbed, thereby reducing surface runoff and enhancing water quality. The water quality can be improved by adding a filter layer to the permeable pavement. This study analyzes the permeability performance and particulate-matter removal efficiency of a bottom ash-silica sand filter. The performances of five filters with bottom ash and silica sand as the basic materials were evaluated on particulate matter sized 60 ㎛ or smaller. The pure silica sand sample and pure bottom ash sample delivered an average removal efficiency of around 70%. The removal efficiency of the mixed sample was approximately 90%, exceeding the recommended reduction rate (80%) at non-point pollution reduction facilities. In future work, the filter performance should be further verified on permeable pavement.

Application Research on Mechanical Strength and Durability of Porous Basalt Concrete

  • Zhu, Yuelei;Li, Jingchun;Zhu, He;Jin, Long;Ren, Qifang;Ding, Yi;Li, Jinpeng;Sun, Qiqi;Wu, Zilong;Ma, Rui;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.32 no.3
    • /
    • pp.115-124
    • /
    • 2022
  • Porous basalt aggregate is commonly used in roadbed engineering, but its application in concrete has rarely been studied. This paper studies the application of porous basalt in concrete. Porous basalt aggregate is assessed for its effects on mechanical strength and durability of prepared C50 concrete; because it has a hole structure, porous basalt aggregate is known for its porosity, and porous basalt aggregates can be made full of water through changing the content of saturated basalt; after full-water condition is achieved in porous basalt aggregate mixture of C50 concrete, we discuss its mechanical properties and durability. The effects of C50 concrete prepared with basalt aggregate on the compressive strength, water absorption, and electric flux of concrete specimens of different ages were studied through experiments, and the effects of different replacement rates of saturated porous basalt aggregate on the properties of concrete were also studied. The results show that porous basalt aggregate can be prepared as C50 concrete. For early saturated porous basalt aggregate concrete, its compressive strength decreases with the increase of the replacement rate of saturated aggregate; this occurs up to concrete curing at 28 d, when the replacement rate of saturated basalt aggregate is greater than or equal to 40 %. The compressive strength of concrete increases with the increase of the replacement rate of saturated aggregate. The 28 d electric flux decreases with the increase of the replacement rate of saturated aggregate, indicating that saturated porous basalt aggregate can improve the chloride ion permeability resistance of concrete in later stages.

A Study on the Resource Development by Heat Dissolution in Electric Arc Furnace of Clinker generated in the Recycling Process of Electric Arc Furnace Dust (전기로 제강분진의 재활용과정에서 발생된 Clinker의 전기로에서의 가열용해에 의한 자원화에 관한 연구)

  • Jae-hong Yoon;Chi-hyun Yoon;Akio Honjo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.1
    • /
    • pp.22-32
    • /
    • 2023
  • In general, when scrap is dissolved in an electric arc furnace, the amount of electric furnace steel dust (EAFD) generated is about 1.5% of the scrap charge amount, and the electric furnace steel dust collected by the bag filter is charged into the Rotary Kiln or Rotary Hearth Furnace (RHF), and the zinc component is recovered as crude zinc oxide, at which time a clinker of Fe-Base is generated. In this research, first, for the efficient resource conversion of electric furnace steel dust, a reduction and roasting experiment was conducted and the reaction kinetics was examined. As a result of the experiment, it was observed that the reduction and roasting reaction was actively conducted in the range of 1100~1150℃, and melting occurred in the range of 1250℃. In the past, this clinker was widely used as a roadbed material for road construction and an Fe-Source for cement production, but in recent years, it has been mainly reclaimed due to strengthening environmental standards. However, landfill treatment is by no means a desirable treatment method due to environmental pollution caused by leachate, expensive landfill costs, and waste of Fe resources. Therefore, in order to more actively recycle the Fe component in the clinker, first of all the clinker was pulverized into an optimal particle size, and anthracite and binder (starch) were added to the magnetic material obtained by specific gravity and magnetic separation for briquet. As a experimental results, it was possible to efficiently separate clinker as Fe component and other slag component by specific gravity and magnetic force. As a results of loading and dissolving the manufactured briquet clinker in an electric arc furnace, it was observed that the unit of power and production yield were clearly improved and the carbon addition effect in molten metal was also somewhat.

The consideration of a input KTX in airport railroad (공항철도 구간 KTX투입 방안 고찰)

  • Kim, Do-Heon;Jung, Byung-Ryul;Rha, Sang-Ju
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1681-1698
    • /
    • 2011
  • According to the demands of the times, Inchon international airport railroad opened up step by step but It is situation that much government subsidies are paid because It does not competitive power with road traffic by decline of schedule speed. Inchon international airport railroad users will convert by other transportation and minimize damage their time as travel time is prolonged. Therefore, need high speedization of airport railroad, this may act big role competitive power security as well as airport railroad activation with another public transportation. Thus, this paper suggests that a high speedization possibility section in the sections of airport railroad and train speed elevation effect analysis by roadbed, railroad, system improvement and the most efficient operation intervals analyzing each vehicles (AREX (120km/h), KTX (230km/h), EMU(Electric Multiple Unit, 180km/h) train running pattern.

  • PDF

Applicability Analysis of an Improved Multistep Steel Pipe Grouting Method in Shallow Depth Railway Tunnels in Considering Safety and Constructability (저토피 철도터널구간의 안전 및 시공성을 고려한 개선된 강관다단 그라우팅 공법 적용성 분석)

  • Kim, Nakseok;Choi, Gisung;Kim, Seokhyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.97-103
    • /
    • 2020
  • The newly improved multistep steel pipe grouting method was applied to an existing steel pipe-reinforced grouting method. It was applied in order to prevent a damage caused by ground failure from excessive grouting pressure in a tunnel construction. The tunnel goes under a highway and a ramp connected to a rest area on OO highway with 11.3~12.1 m depth cover and is a part of roadbed facility construction section ordered by OO public corporation. The improved grouting method provides pre-construction work condition assessment technique through new water injection limit test and grouting effect assessment technique by grouting type assessment. It also includes assessments on interval of joints, appropriate grouting pressure, and optimal operation time to be applied to current operations. Application of the grouting method allowed the smooth road management in shallow-depth grouting construction area located upper part of tunnel excavation. Moreover, the possibility of the application of the method not only to shallow-depth grouting construction but also to various steel pipe-reinforced grouting constructions was confirmed.

The Experimental Study on The Compressive Strength of Concrete Using High Quality Recycled Fine Aggregate Produced by Sulphuric Water and Low Speed Wet Abrasional (황산수와 저속습식마쇄기로 생산된 고품질 순환 잔골재의 콘크리트 압축강도에 관한 실험적 연구)

  • Choi, Duck-Jin;Lee, Dae-Guen;Kim, Ha-Suk;Kawk, Eun-Gu;Kang, Chul;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.385-388
    • /
    • 2008
  • Recycled fine aggregate has low quality because it contains large amount of old mortar. So, its usage is limited to a lower value-add, such as the roadbed material etc. Also, alkaline water occurred from treatment process of the waste concrete is becoming the cause of environmental problem. Accordingly, this study is to develop on the high quality recycled fine aggregate produced by low speed wet abraser using sulphuric. We investigated the properties of compressive strength of the mortar which was manufactured using recycled fine aggregate containing calcined gypsum produced by earlier mentioned process. Test results indicate that concrete using recycled fine aggregate containing calcined gypsum is higher compressive strength than concrete using other sands.

  • PDF

A study on efficient management of the drainages of underground tunnels for environmentally friendly urban railway systems (도시철도 친환경 지하터널 배수형식의 효율적인 유지관리 방안 검토)

  • Baek, Jong-Myeong;Hong, Jong-Hun;Kim, Han-Bae
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1982-1990
    • /
    • 2010
  • Excepting tunnel of dorimstream - ccachimountain station section, the subway line No.2th section was build using ASSM and NATM methods because of soil pressure and land condition. The way of dealing underground water was selected without sufficient preconsideration of geographical features, ground condition, influence of lowing underground water, and long-term cost of running maintenance so that the form of undrained tunnel was build having decreased construction characteristics and technically improper elements. The form of partial drainage is very difficult to manage structures of tunnel, because water leakage, water pressure causing cracks of lining concretes and scaling are constantly happened. so partial drainage suggest that setting reinforced Anchor Bolt to prevent buoyancy and should increase center drainage way up to height of railroad. Partial drainage suggest that holey pipe(${\phi}$350mm) manhole, drainage checking pipe manhole are should be regularly dredged, when changing roadbed(gravel${\rightarrow}$concrete) drainage checking pipe manhole should be build and setting a limitation of entering underground water's quantities. Beside drainage degree in changed section of structures causing instability of structures is continuous degree. so if efficient drainage way and the patterns of flaws, problems are considered in survey, it will be expected to have a advantage condition in maintenance part.

  • PDF

An analytical Study for the Development of Highly Elastic Material applicable for Joint in Modular Pavement (모듈러 포장에 적용가능한 고탄성 연결재료 개발을 위한 해석적 연구)

  • Lee, Young-Ho;Kang, Su-Tae;Song, Jae-Joon;Lee, Sang-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5947-5955
    • /
    • 2013
  • This study was intended to estimate the axial deformation of joint between pavement modules in the rapid-constructible modular pavement system, and to investigate the applicability of two-phase composites for a joint material, which was composed of cement paste, epoxy, or polyurethane as a matrix and sand as particles. A case which had supports under the pavement module as well as a case which the module was put on roadbed directly were considered in FEM analysis for the axial deformation. The effect of self-weight, live load, thermal change, and drying shrinkage were estimated and the thermal change was found to cause the largest deformation compared to the others. Deformation capacity of two-phase composites was predicted using the modified shear-lag model. In the analytical results for the elastic modulus and maximum tensile strain with different volume fractions of sand, 20~30 % replacement of sand was revealed to satisfy the required strain capacity with economy when if the width of joint was designed to be 15~20 mm.

Evaluation of Design Characteristics in the Reinforced Railroad Subgrade Through the Sensitivity Analysis (민감도 분석을 통한 철도보강노반 설계 특성 평가)

  • Kim, Dae-Sang;Hwang, Sung-Ho;Kim, Ung-Jin;Park, Young-Kon;Park, Seong-Yong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.15-22
    • /
    • 2013
  • By changing from ballasted track to concrete slab track, new type railroad subgrade is strongly required to satisfy strict regulations for displacement limitations of concrete slab track. In this study, sensitivity analysis was performed to assess the design characteristics of new type reinforced railroad subgrade, which could minimize residual settlement after track construction and maintain its function as a permanent railway roadbed under large cyclic load. With developed design program, the safety analysis (circular slip failure, overturning, and sliding) and the evaluation of internal forces developed in structural members (wall and reinforcement) were performed according to vertical installation spacing and stiffness of short and long geotextile reinforcement. Based on this study, we could evaluate the applicabilities of 0.4 H short geogrid length with 0.4 m vertical installation spacing of geotextile as reinforcement and what the ground conditions are for the reinforced railroad subgrade. And also, we could grasp design characteristics of the reinforced railroad subgrade, such as the importance of connecting structure between wall and reinforcement, boundary conditions allowing displacement at wall ends to minimize maximum bending moment of wall.