• Title/Summary/Keyword: road vehicle

Search Result 2,527, Processing Time 0.25 seconds

Component Sizing for the Hybrid Electric Vehicle (HEV) of Our Own Making Using Dynamic Programming (동적계획법을 이용한 자작 하이브리드 자동차의 용량 매칭)

  • Kim, Gisu;Kim, Jinseong;Park, Yeong-il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.576-582
    • /
    • 2015
  • Generally, the fuel economy of hybrid electric vehicle (HEV) is effected by the size of each component. In this study the fuel economy for HEV of our own making is evaluated using backward simulator, where dynamic programming is applied. In a competition, the vehicle is running through the road course that includes many speed bumps and steep grade. Therefore, the new driving cycle including road grade is developed for the simulation. The backward simulator is also developed through modeling each component. A performance map of engine and motor for component sizing is made from the existing engine map and motor map adapted to the HEV of our own making. For optimal component sizing, the feasible region is defined by restricting the power range of power sources. Optimal component size for best fuel economy is obtained within the feasible region through the backward simulation.

Study on Interior Noise Transfer Path Analysis by Tire Cavity Resonance (타이어 공동의 공명에 의한 차량 실내음 전달경로 연구)

  • Lee, Sang-Ju;Kang, Byun-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.129-133
    • /
    • 2005
  • Vibration transmitted through rolling tire is a major source of road noise in vehicle interior noise on the range of low frequency.($0{\sim}500Hz$) Among various road noises, tire cavity noise has very peak on $200{\sim}250Hz$. And generally it is generated by cavity resonance of tire. In this paper, tire cut-sample is used to calculate the tire cavity frequency. Cavity resonance frequency of tire is measured through vertical/tangential forces at load cell of axle using drum cleat impact. This method is useful to find cavity peak because measured forces do not have complex peaks. And changing the test conditions (air inflation, loads), tire cavity resonance characteristics are identified. Finally, vehicle interior noise is measured as tire/vehicle are changing. As difference of tire vertical force is bigger, interior noise level is higher at cavity frequency. Also we can assume that vehicle sensitivity is important factor at tire cavity noise.

  • PDF

Parameter Analysis of Sound Radiation for Bridges Under Moving Vehicles (이동차량하중에 의해 발생되는 교량진동음압의 매개변수 분석)

  • Lee Yong-Seon;Kim Sang-Ryo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.772-777
    • /
    • 2006
  • An acoustic finite element model of a bridge is developed to evaluate the noise generated by the traffic-induced vibration of the bridge. The dynamic response of a multi-girder bridge, modeled by a 3-dimensional frame element model, is analyzed with a 3-axle(8DOF) truck model and a 5-axle(l3DOF) semi-trailer. The flat plate element is used to analyze the acoustic pressure due to the fluid-structure interactions between the vibrating surface and contiguous acoustic fluid medium. The radiation fields of noise with a specified distribution of vibrating velocity and pressure on the structural surface are also computed using the Kirchhoff-Helmholtz integral. In an attempt to illustrate the influence of the structural vibration noise of a bridge to total noise level around the bridge, the random function is used to generate the vehicle noise source including the engine noise and the rolling noise interacting between the road and tire. Among the diverse parameters affecting the dynamic response of bridge, the vehicle velocity, the vehicle weight, the spatial distribution of the road surface roughness, the stiffness degradation of the bridge and the variation of the air temperature changing the air density are found to be the main factors that increase the level of vibration noise. Consequently, The amplification rate of noise increases with the traveling speed and the vehicle weight.

  • PDF

Design of Chicane Based on Vehicle Movement Trajectory (자동차 이동 궤적을 고려한 시케인 설계)

  • Kim, Yong Seok;Lee, Suk Ki
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.159-165
    • /
    • 2012
  • PURPOSES : The lack of details of guidelines on how to install the Chicane for traffic calming leads the practical difference across the calming areas, so the benefits expected from these facilities are not hardly observed. In this context, this study analysed the relationship between the geometric design alternatives of Chicane with the dynamic behaviour of vehicles in terms of speed and trajectory. METHODS : The study analysed vehicle dynamic behaviour using dynamic analysis program Auto-Turn under various geometric conditions of Chicane. RESULTS : This study suggested the design alternatives of Chicane using terms such as "longitudinal displacement value", "lateral displacement value", etc. which are defined in the study. The suggested combination set is fulfilling the desired or target speed of vehicles and clearance between vehicle and roadside at the same time. CONCLUSIONS : The results from this study can be applied to install Chicane corresponding to the local condition where target speed is 30km/h. The study showed the design alternatives of chicane corresponding to the given road cross-sectional design and clearance to roadside for passenger cars and light truck respectively.

Parametric investigation of a hybrid vehicle's achievable fuel economy with optimization based energy management strategy

  • Amini, Ali;Baslamisli, S. Caglar;Ince, Bayramcan;Koprubasi, Kerem;Solmaz, Selim
    • Advances in Automotive Engineering
    • /
    • v.1 no.1
    • /
    • pp.105-121
    • /
    • 2018
  • The hybrid electric powertrain is a robust solution that allows for major improvements in both fuel economy and emission reduction. In the present study, a through-the-road hybrid vehicle model with an electric motor driving the rear axle and an Internal Combustion Engine (ICE) driving the front axle has been constructed. We then present a systematic method for the determination of a real time applicable optimal Energy Management Strategy (EMS) for a hybrid road vehicle. More precisely, we compare the performance of rule-based EMS strategies to an optimization-based strategy, namely ECMS (Equivalent Consumption Minimization Strategy). The comparison is conducted in parallel with a parameterization of the size of the internal combustion engine and the implementation of a Continuously Variable Transmission (CVT) that allows following the line of best fuel economy. For the FTP-75 driving cycle, the constrained engine On-off control algorithm is shown to offer a 28% improvement potential of fuel consumption compared to the conventional internal combustion engine while the ECMS strategy achieves an improved potential of nearly 33%.

Dynamic Performance Analysis for 6WD/6WS Armored Vehicles (6WD/6WS 군용차량의 동역학적 성능해석)

  • 홍재희;김준영;허건수;장경영;오재응
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.155-166
    • /
    • 1997
  • In this study, a simulation tool is developed in order to investigate non steady-state cornering performance of 6WD/6WS special-purpose vehicles. 6WD vehicles are believed to have good performance on off-the-road maneuvering and to have fail-safe capabilities. But the cornering performances of 6WS vehicles are not well understood in the related literature. In this paper, 6WD/6WS vehicles are modeled as a 18 DOF system which includes non-linear vehicle dynamics, tire models, and kinematic effects. Then the vehicle model is constructed into a simulation tool using the MATLAB /SIMULINK so that input/output and vehicle parameters can be changed easily with the modulated approach. Cornering performance of the 6WS vehicle is analyzed for brake steering and pivoting, respectively. Simulation results show that cornering performance depends on the middle-wheel steering as well as front/rear wheel steering. In addition, a new 6WS control law is proposed in order to minimize the sideslip angle. Lane change simulation results demonstrate the advantage of 6WS vehicles with the proposed control law.

  • PDF

An Experimental Study on the Transient Behavior of Vehicle Rollover (차량 롤전복의 과도거동에 관한 시험적 연구)

  • Lee, Myung-Su;Kim, Sang-Sup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.113-121
    • /
    • 2011
  • Rollover accident is one of the serious traffic accident and rollover accident takes high portion of all accident. The most common type of rollover is a tripped rollover which occupy 95% of all type of single-vehicle rollover. Tripped rollover occurs when a vehicle leaves normal road way and tripped by loose gravel, soil of fixed object such as guard rail, curbs and ditches. And the rest of the type of rollover is un-tripped rollover. An un-tripped rollovers that occurs during high-speed collision avoidance maneuvers. In this paper, presents the explanation of the un-tripped rollover test method and procedure, additionally this paper deals with various occurrence in the un-tripped test such as occurring excessive tire camber in the un-tripped test, tire side-wall contact with road surface and roll oscillation. And this paper analyzes the analysis of the roll rate amplitude in specific frequency through the FFT (Fast Fourier Transform) and the roll angle at the steering reverse timing which is the Fishhook test roll rate feedback time. Finally, this paper analyzes the relations between the estimated steady state roll gain and rollover stability.

Parking Space Recognition for Autonomous Valet Parking Using Height and Salient-Line Probability Maps

  • Han, Seung-Jun;Choi, Jeongdan
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1220-1230
    • /
    • 2015
  • An autonomous valet parking (AVP) system is designed to locate a vacant parking space and park the vehicle in which it resides on behalf of the driver, once the driver has left the vehicle. In addition, the AVP is able to direct the vehicle to a location desired by the driver when requested. In this paper, for an AVP system, we introduce technology to recognize a parking space using image sensors. The proposed technology is mainly divided into three parts. First, spatial analysis is carried out using a height map that is based on dense motion stereo. Second, modelling of road markings is conducted using a probability map with a new salient-line feature extractor. Finally, parking space recognition is based on a Bayesian classifier. The experimental results show an execution time of up to 10 ms and a recognition rate of over 99%. Also, the performance and properties of the proposed technology were evaluated with a variety of data. Our algorithms, which are part of the proposed technology, are expected to apply to various research areas regarding autonomous vehicles, such as map generation, road marking recognition, localization, and environment recognition.

A Study for Smart Overload Vehicle Regulation System (지능형 과적단속을 위한 시스템 구축 연구)

  • Jo, Byung-Wan;Yoon, Kwang-Won;Park, Jung-Hoon;Choi, Ji-Sun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.399-404
    • /
    • 2011
  • Overload vehicles have demoralizing influence upon the social overhead capital, economics of nation, traffic flow and road safe as various components. Accordingly, this study established a ubiquitous sensor network system to develop an intelligent regulation system to monitor overloaded vehicles in motion. and Unlike WIM, after detecting the axle of driving vehicles by measuring deformation of roads, this system calculates the weights of vehicles by using signals from the strain sensors installed under the road and an analysis method. Also the study conducted an simulation test for vehicle load analysis using genetic algorithm. and tested wireless sensor for USN system.

Traffic Information Service Model Considering Personal Driving Trajectories

  • Han, Homin;Park, Soyoung
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.951-969
    • /
    • 2017
  • In this paper, we newly propose a traffic information service model that collects traffic information sensed by an individual vehicle in real time by using a smart device, and which enables drivers to share traffic information on all roads in real time using an application installed on a smart device. In particular, when the driver requests traffic information for a specific area, the proposed driver-personalized service model provides him/her with traffic information on the driving directions in advance by predicting the driving directions of the vehicle based on the learning of the driving records of each driver. To do this, we propose a traffic information management model to process and manage in real time a large amount of online-generated traffic information and traffic information requests generated by each vehicle. We also propose a road node-based indexing technique to efficiently store and manage location-based traffic information provided by each vehicle. Finally, we propose a driving learning and prediction model based on the hidden Markov model to predict the driving directions of each driver based on the driver's driving records. We analyze the traffic information processing performance of the proposed model and the accuracy of the driving prediction model using traffic information collected from actual driving vehicles for the entire area of Seoul, as well as driving records and experimental data.