
 

www.kips.or.kr                                                                                                 Copyright© 2017 KIPS 

       
 
         

 
 

 

Traffic Information Service Model Considering  
Personal Driving Trajectories 

 

 

Homin Han* and Soyoung Park* 

 

 

Abstract 
In this paper, we newly propose a traffic information service model that collects traffic information sensed by 
an individual vehicle in real time by using a smart device, and which enables drivers to share traffic 
information on all roads in real time using an application installed on a smart device. In particular, when the 
driver requests traffic information for a specific area, the proposed driver-personalized service model provides 
him/her with traffic information on the driving directions in advance by predicting the driving directions of 
the vehicle based on the learning of the driving records of each driver. To do this, we propose a traffic 
information management model to process and manage in real time a large amount of online-generated 
traffic information and traffic information requests generated by each vehicle. We also propose a road node-
based indexing technique to efficiently store and manage location-based traffic information provided by each 
vehicle. Finally, we propose a driving learning and prediction model based on the hidden Markov model to 
predict the driving directions of each driver based on the driver's driving records. We analyze the traffic 
information processing performance of the proposed model and the accuracy of the driving prediction model 
using traffic information collected from actual driving vehicles for the entire area of Seoul, as well as driving 
records and experimental data. 
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1. Introduction 

With the widespread use of IoT technology, there has been active research on connected cars that can 
build a safe and intelligent transportation system (ITS) through real-time information communication 
between vehicles. However, various service models that can realize an early connected car environment 
by combining existing vehicles and smart mobile devices have been developed because the supply of 
smart cars with inter-vehicle communication and computing functions remains insufficient, and it is 
too early stage to establish a connected-car environment. 

Recently, a lot of driver assistant mobile applications that provide useful information to the driver 
such as a car navigation application, a driving pattern analysis application, and a vehicle condition 
check application have been developed. The development of services that can implement the existing 
ordinary cars as smart cars in combination with smart mobile devices that provide with portability, 
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location information, computing and storage functions, and communication functions is expanding, 
and the service users are also increasing. 

The most essential information that a driver needs while driving is the real-time traffic information 
for his or her driving route. Through the combination of car and smart mobile device, it is possible to 
obtain traffic information from each vehicle in real time, share the traffic information between vehicles, 
and it is also possible for drivers to obtain traffic information for a desired area in real time. 
Particularly, if the driver can grasp the real-time traffic situation in advance to the route to be moved 
forward, it is possible to more efficiently travel by responding to the current traffic situation more 
quickly.  

In this paper, we propose a practical traffic information service model that collects traffic information 
in real time through a smart device application mounted in each vehicle, and which obtains the latest 
traffic information on the location desired by the driver. In particular, we newly propose a personalized 
traffic information service model that provides the latest traffic information on the most likely driving 
directions to reach the location requested by the driver. The proposed model considers the moving 
directions of the vehicle. Currently, real-time traffic information is collected using CCTVs or traffic-
collection devices installed in a specific location, but this has the disadvantage of not being able to share 
traffic information in real time for roads other than specific areas. 

In the proposed model, the vehicle generates location information and driving information of the 
vehicle by utilizing a GPS-receiving function of a smart device and other sensors, and it periodically 
provides the driving information to a traffic information management server through a vehicle black 
box application. The traffic information management server can collect image-based traffic information 
from each vehicle in real time. In addition, the driver can also share in real time online traffic 
information on all roads provided by all vehicles using the proposed application. In order to practically 
implement and utilize the proposed model, in this study, we propose specific techniques that focus on 
the following three topics. (1) We design a traffic data management model that can effectively manage 
and provide traffic information provided by each vehicle in real time. Second, in order for the traffic 
information management server to efficiently store and retrieve traffic information, the traffic 
information should be indexed by an actual road location (or node). (2) We propose a new method to 
efficiently search for road nodes mapped to GPS positions. Then, when a driver requests the latest 
traffic information for a specific location from the traffic information management server, the latest 
traffic information on the most likely driving directions to reach the target position is first provided by 
considering the driving directions of the vehicle. (3) We propose a prediction model of the driving 
directions of the vehicle through hidden Markov model (HMM) [1] learning of the driving records of 
each vehicle. 

Finally, we analyze the performance of real-time traffic information collection and processing based 
on the road information in Seoul. We also analyze the accuracy of the proposed driving probability 
model by utilizing actual driving records in order to evaluate the performance of the proposed model. 

The structure of this paper is as follows. In Section 2, we discuss related works. In Section 3, we 
explain the components and assumptions of the proposed model. In Section 4, we describe in detail the 
main functions of the vehicle black box application for the smart device and the search technique for 
road node search from GPS coordinates as well as the probability model for vehicle driving prediction. 
In Section 5, we present the traffic information management server, which can efficiently collect and 
manage traffic information. Then, in Section 6, we analyze the performance of the proposed model, and 
in Section 7, we conclude this paper. 
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2. Related Works 

In this paper, we present techniques that provide traffic information suitable to a driver by collecting 
traffic information sensed by each vehicle, analyzing the driving route of the vehicle, and predicting the 
driving directions of the vehicle. First, Mohan et al. [2] proposed a method of sensing road condition 
information using various smartphone sensors. In SEER [3], a model was proposed to detect traffic 
conditions in Shanghai using information sensed by taxis. The technique proposed in [4] also utilizes 
the information provided by each vehicle to sense the traffic situation in an urban area. 

GreenGPS [5] proposed a model that provides the driver with useful personalized services by utilizing 
traffic information collected through smart devices, and proposed a method to improve the fuel 
efficiency by analyzing the fuel use status according to each road on which a vehicle is driven. 
RoadAware [6] proposed a model that provides the driver with road information by analyzing the 
waiting time of the vehicle at each traffic light on commuter routes, the distance between traffic lights, 
the time taken for the signal to change, and the traffic volume between traffic lights. In [7], the authors 
proposed a method of searching for an eco-friendly route that is suitable for the driver by considering 
the driver's driving style and traffic conditions. 

Guttman [8] proposed the R-tree as a search technique to search for the road nodes that are closest to 
GPS coordinates, which is often used to solve the k-nearest neighbor (k-NN) problem. The R*-tree [9] 
was proposed to complement the overlapping of clustering areas owing to the nature of the R-tree, but 
it does not completely resolve the overlapping problem. A kDB-tree [10] in which the overlapping 
problem does not occur was proposed, but there may be a region that contains only a very small 
number of nodes owing to the partition rule of the kDB-tree itself. Recently, the GB-tree [11] using the 
GeoHash was proposed. While it is not a clustering method, it is used to calculate and store a high-
precision GeoHash for a specific space. This method is similar to the proposed method, yet the 
performance of the proposed method is better than that of the GB-tree because the size of the tree is 
relatively large, and additional operations are required for the search-tree generation. 

With regard to driving-route prediction, T-Drive [12] proposed a model that provides a driver with 
smart driving directions based on the driving records of taxi drivers, who are always searching for the 
shortest route. This is similar to the proposed study in terms of predicting the driving directions based 
on the driving records of the vehicle, but it is different in that our study provides general driving 
directions for all vehicles. 

 
 

3. System Model and Assumptions 

The proposed traffic information service model consists mainly of vehicles, smart mobile devices 
equipped with a vehicle blackbox application, and the traffic data management system (TDMS). 

We assumed that a smart mobile device is equipped with a GPS receiver, camera, computational 
capabilities, data storage, and wireless communication functions.  

Vehicular Blackbox Application (hereinafter referred to as TrafficAPP) provides a road map, a 
blackbox function, a function to store and learn driving records, a mapping function of actual road 
information corresponding to GPS coordinates, and a driving information generation and transmission 
function. In addition, it receives a user request and provides the user with a request result by 
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communicating with the traffic information management server. 
The TDMS stores and manages in real time driving information of various areas provided by each 

vehicle, processes the user's traffic information request for a specific location, and provides the latest 
information on the location. 

In summary, the TDMS collects traffic information in real time from vehicles that use the TrafficAPP, 
and the vehicle can request traffic information for the desired location using the TrafficAPP from the 
TDMS, and the TDMS provides the latest traffic information on the location, as illustrated in Fig. 1. 

 

             
Fig. 1. Communication between vehicles and traffic data management system (TDMS). 

 
Road information uses the road node information provided by the Ministry of Land, Infrastructure, 

and Transport. A road node represents the points at which two or more roads intersect, merge, or 
separate, and the section between nodes is represented by a link. Each node has its own unique ID. In 
this study, virtual road nodes are also created and utilized along with real road nodes to realize a more 
accurate representation of road information. The length of the link between nodes differs depending on 
the road type (public road or highway) and the area (urban area or suburban area). Therefore, in the 
case where the length of the link exceeds the threshold determined by the system, the link is divided by 
the threshold unit, and a virtual node is also created at the threshold point. For a curved road, a virtual 
node is added to the portion corresponding to the vertex of the curve (provided by the Ministry of 
Land, Infrastructure, and Transport). The ID of the added node is generated by adding the lower two 
digits to the ID of the node with the smaller ID among the adjacent nodes connected to the link at 
which the additional node is positioned. Each time a node is added, the additional lower digit 
incremented by 1. It is possible to identify which virtual node is derived from which node as the virtual 
nodes have the same ID prefix value as the adjacent real nodes. 

We assumed that the proposed TrafficAPP and the TDMS server have road-node network 
information (hereinafter referred to as RNetwork) that indicates the adjacent state between all of the 
nodes, including the virtual nodes. Because the positions of the road nodes and the distances between 
nodes are fixed, the shortest distance and shortest path between all nodes can be determined based on 
the Euclidean distance. We assumed that the information about these is available. All notations used in 
the paper are summarized in the following Table 1. 

 
 

4. TrafficAPP: A Vehicular Blackbox Application for Smart Mobile 
Devices 

This section describes the TrafficApp in detail. First, we describe the main functions of TrafficAPP, 
and we describe GPS coordinates and a proposed road-node matching technique to collect efficient 
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traffic information. In addition, we describe in detail a method to build a probability model for the 
driving directions of the vehicle in order to provide traffic information for each vehicle. 

 
Table 1. Notations 

Notation Description 
TDMS Traffic data management system 

TrafficAPP A mobile application for a car 
TrafficMSG A text-based traffic message periodically generated by TrafficAPP 
TrafficIMG A image-based traffic message periodically generated by TrafficAPP 

TrafficRQST A traffic request message generated by TrafficAPP 
DPP Data processing pipeline for TDMS 

MsgSV A storage for TrafficMSG 
ImgSV A storage for TrafficIMG 

RNetwork A road node network  
CNID The ID of node that is the closest to given GPS 
PNID The ID of node that a car previously passed by 
Speed The current speed of a car 

Timestamp The current time 
HS-Tree Hash search tree to find a node id corresponding to given GPS 

n The total number of road nodes 
Ni The i-th node in RNetwork 

|Ni| The # of nodes adjacent to Ni 
Ni,k The k-th adjacent node to Ni 
TJ A series of node ids that a car passed by sequentially 
TJi The i-th visiting node in TJ 
O A series of observed events that a car made at each node 
Oi  The event happened at TJi 
Aij The transition probability from Ni to Nj 

Bi(k) The probability that an event k occurs at Ni 
I(i) The probability that a trajectory begins at Ni 

TGPS The GPS coordinates of a target position 
NT The node closest to TGPS 

NTPrev The final visiting node before reaching TGPS 
 
 

4.1 Functions of TrafficAPP 
 

TrafficAPP consists of a black box shooting and storage module, a driving record analysis module, 
and a real-time traffic information management module, as shown in Fig. 2. It uses the camera and GPS 
functions of the smart device. To utilize the road information, a hash search tree that is capable of 
searching for road nodes matched with electronic maps such as Google Map, road-node networks, and 
GPS coordinates is given. The blackbox module captures current driving situations ahead of the vehicle 
using the camera function of the smart device. The captured image is divided into a predetermined size 
unit, and it is stored and managed as a file. The images that are captured periodically according to user 
settings are utilized for the generation of real-time traffic information. The driving record analysis 
module learns the driving route each time the vehicle moves drives. It then updates the probability 
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model of the moving route for each road node. The real-time traffic information management module 
performs the function of providing driving information to the traffic information server by generating 
driving information periodically, and it also performs the function of requesting real-time traffic 
information for the driver’s desired location.  

 

 
Fig. 2. System configuration of TrafficAPP. 

 

4.2 Traffic Message 
 

Each vehicle transmits a traffic message periodically to the TDMS via the TrafficAPP. The traffic 
message is provided as a text message (hereinafter referred to as TrafficMSG) that indicates the current 
driving state and a static image frame (hereinafter referred to as TrafficIMG) that is periodically 
extracted from the images recorded using the TrafficApp blackbox function. However, the TrafficIMG 
is optionally provided only if the driver has activated the TrafficAPP blackbox function. The 
transmission period of the TrafficMSG can be selectively set by a certain time unit (e.g., a 1-s unit) or a 
certain driving distance (e.g., a 10-m unit). The TrafficIMG is transmitted when at a certain driving 
distance by a certain driving distance. The basic message formats of TrafficMSG and TrafficIMG are as 
follows. 

 
TrafficMSG = {“TMG” || GPS-coordinates || CNID || PNID || Speed || Timestamp}; 

TrafficIMG = {“IMG” || GPS-coordinates || CNID || PNID || Speed || Timestamp} + Captured Image File; 
 
The CNID indicates a road node ID mapping to the GPS coordinates contained in the current 

TrafficMSG. The PNID is a node ID that a vehicle previously passed, and it indicates the CNID value of 
the immediately preceding TrafficMSG. The method used to find a road node that maps to GPS 
coordinates is explained in detail in the next section. 

 
4.3 GPS Position to Road Node Mapping Strategy  
 

In this section, we describe the proposed hash search tree (HS-tree) generation method to search for a 
road node closest to a given GPS position. First, the whole area including the entire road is divided into 
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a grid of the same size in a manner similar to the GeoHash. A hash code is assigned to the final divided 
space. Let the final divided space be a terminal. All of the GPS coordinates contained in one terminal 
are mapped to a unique hash code, and the road nodes are clustered on a terminal unit basis. At this 
time, in the case where the number of road nodes included in each terminal is very small, the merging 
process is repeated so that the number of nodes included in all the terminals is similar by merging with 
the adjacent terminal. Here, the hash value of the merged terminal is changed through merging. As the 
final outcome, a hash search tree is constructed to efficiently search for the final merged terminal and 
hash code. The proposed scheme consists mainly of four steps: (1) hash code assignment by space 
partitioning, (2) merger of terminals, (3) hash search tree construction, and (4) road node mapping. 
Details of each step are as follows: 

 

Hash Code Assignment 
 
Let the whole area including the entire road be the initial two-dimensional (2D) space. We partition 

the initial space by the same size vertically and horizontally in sequence. Then, we repeat the same 
process until the final divided space is reduced to a predefined space. Each time the space is partitioned, 
we append 0 and 1 to the existing code values in each partitioned space, as shown in Fig. 3(a). For each 
iteration of the space partition, a binary search tree can be created for the added code value, as shown in 
Fig. 3(b). The end node of the generated binary search tree is called a terminal, and the binary code 
assigned to each terminal is a hash code for that terminal. 

 

                  
 (a) (b) 
Fig. 3. Space partitioning and hash-code assignment. (a) Space partitioning, (b) initial binary search tree. 

 

Merger of Terminals 
 
Each terminal node of the generated binary search tree includes ID information of all road nodes in 

the corresponding terminal space. Here, the number of road nodes included in the terminal varies 
depending on the local characteristics of each terminal. For a terminal located in a city area, the number 
of road nodes is relatively large, while the corresponding number is small or zero in mountainous or 
coastal regions. To match the number of nodes similarly included in each terminal, a terminal for which 
the number of road nodes included in the terminal is less than the minimum threshold set by the 
system is merged with an adjacent terminal. A merger is performed only if both of the following 
conditions are met: (1) the length of the hash codes of the two terminals is the same, and there is only a 
1-bit difference in the remaining bit strings, excluding the common prefix. (2) The number of road 
nodes included in the merged terminal does not exceed the maximum threshold set by the system. 

When two terminals merge, the hash code for the merged terminal is changed to 0, with the 
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exception of the hash code that is common to both terminals prior to merging. The terminal merging 
process is shown in Fig. 4. 

 

        
 (a) (b) 
Fig. 4. Merger of terminals. (a) Initial terminals before merging, (b) after merging of terminals. 

 

HS-Tree: Hash Search Tree Construction  
 
When terminals merge, the terminal level on the initial binary search tree changes, as shown in Fig. 4. 

To make the search times for all terminals the same, it is converted into a B+ tree with the hash codes 
for merged terminals as keys. The finally converted B+ tree is called a hash search tree. As a result, there 
are terminals at the end of the final hash search tree. The terminals with the same hash prefix have the 
same parent node. 

 
Node Mapping Strategy 
 
Given the GPS coordinates, we describe how to determine the hash code and the road node through 

the hash search tree. The hash code corresponding to given GPS coordinates is determined by the 
following algorithm. 

 

// COORD : GPS coordinates 

// MIN_COORD : Min coordinates of the initial region 

// MAX_COORD : Max coordinates of the initial region 

HashGPS (COORD) { 

   HASH = 0; 

   For 1 to ACCURACY 

  HASH << 1; //Left shift 

  MID_COORD = (MIN_COORD + MAX_COORD) / 2; 

  If COORD is bigger than MID_COORD 

   HASH += 1; 

   MIN_COORD = MID_COORD; 

  else 

   MAX_COORD = MID_COORD; 

} 
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For example, when the GPS coordinates (37.54268, 127.07683) for the range of the latitude (ranging 
from 33 to 39) and longitude (ranging from 124.5 to 132) of the initial space is given, hash code 
10110001 is assigned. The process of converting to the hash code is shown in Table 2. 

 
Table 2. Process of converting to the hash code 

Step GPS Min Mid Max Hash 
1 
 

Latitude 33 (initial min) 36 39 (initial max) 1 
Longitude 124.5 (initial min) 128.25 132 (initial max) 0 

2 
 

Latitude 36 37.5 39 1 
Longitude 124.5 126.375 128.25 1 

3 
 

Latitude 37.5 38.25 39 0 
Longitude 126.375 127.3125 128.25 0 

4 
 

Latitude 37.5 37.875 38.25 0 
Longitude 126.375 126.8438 127.3125 1 

 
Once the hash code is determined, the terminal containing GPS coordinates can be found using the 

hash search tree. Because the terminal at the end of the hash search tree has a merged hash code, there 
may not be any terminal that exactly matches the given hash code. In this case, we selected a terminal 
for which the upper prefix value is most matched among terminals at the end of the hash tree. Once the 
terminal is determined, the GPS information of the nodes included in the corresponding terminal is 
sequentially compared to determine the closest node ID. 

 
4.4 HMM-Based Driving Trajectory Estimation Model  
 

The TrafficApp continuously learns the driver's driving records, constructs a probability model for 
the driving route, and uses it to predict the driving directions. Most of the roads are bidirectional, and 
there are at least four different driving directions at each intersection. Furthermore, the traffic situation 
may be completely different depending on the driving directions, even for the same location. Therefore, 
in order for the traffic information to be meaningful to the driver, it should inform the driver about 
driving directions in advance by predicting the driving route with the highest probability of reaching 
the target position from the current position of the driver. Therefore, in this section, we describe in 
detail a method that can be used to build a probability model to predict the driver's driving directions 
using the driver's driving records, and we then propose a practical prediction algorithm. 

 
4.4.1 HMM-based probabilistic model for driving directions  
 

The TrafficApp periodically generates the TrafficMSG. On each occasion, the node ID at which the 
vehicle has moved is determined. Let TJ be the driving trajectory of the vehicle from start to finish. TJ 
represents the set of a series of consecutive node IDs that the vehicle passed while driving. Here, 
consecutively duplicated IDs are replaced with one ID value. The proposed driving probability model 
updates the probability of the vehicle moving between road nodes using HMM learning for new driving 
trajectories. 

Let Ni be the ith node. |Ni| denotes the number of nodes adjacent to Ni, and Ni,k denotes the kth 
adjacent node to Ni. The event that the vehicle can perform at each node is to move to a specific 
adjacent node. That is, the event value generated at each node is defined as the index value (k) of the 
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adjacent node into which the vehicle moved from the corresponding node. Because the number of 
adjacent nodes is different for each node, the number of events that can occur at each node is the same 
as the number of adjacent nodes. The maximum value (m) that an event can have for the entire road is 
argmax(|Ni|). 

For the driving trajectory TJ, let the event set observed at each node be O. Let TJi be the ith visited 
node. Oi denotes an event that occurs to move from TJi to TJi+1, and it is an index value that corresponds 
to TJi+1 among adjacent nodes to TJi. At each node, HMM learning is carried out based on the Baum-
Welch algorithm once the observation vector O for the moving direction is given at each node. The 
driving probability model (Θ) consists of (1) the transition probability of a vehicle moving between 
nodes for all road nodes, and (2) the probability of an event moving in a specific direction at each node. 
Let Aij be the transition probability that a vehicle will move from Ni to Nj, and let Bi(k) be the probability 
that an event moving from Ni to Ni,k will occur. The initial values of Aij and Bi(k) are determined by Eqs. 
(1) and (2). I(i), which is the probability (Prob(TJ1 = Ni)) that driving starts at Ni, is initialized to zero. 

 
��� = 	 �

�
 ,              1≤i, j ≤n.                                                                  (1) 

 

����� = 	 � �

|��|
												if		1 ≤ 	�	 ≤ 	 |
�|;

0															��ℎ����.											 		
�                                                   (2) 

 

At each instant in time, O is given the value of NewAij, and NewBi(k) is updated as follows. T is equal 
to |O|, and Ot indicates the tth observed event value. Under the condition where TJ and O are given, the 
value of I(i) is updated first as follows. 

 
���� = ����+ 1    if Ni = TJ1; and 

���� = 	 �(�)

∑ �(�)�
���

	 , 1	 ≤ 	�	 ≤ �.                                                                 (3) 

 
In order to obtain the transition probability of moving from Ni to Nj, we need to obtain (1) 

�
���,	which is the probability of being at node Ni at any time t, and (2) �
��, ��,	which is the probability 
of being at node Ni at any time t and being at node Nj at any time t+1. First, �
(�) which is the 
probability of being at node Ni at any time t regardless of the state that it is in time (except for t), is 
determined by	�
���,	 which is the probability of being at node Ni at time t and the occurrence of 
O1,…,Ot until t and �
���, which is the probability of occurrence of Ot+1,…,OT from t+1 under the 
condition of being at node Ni at time t. Both	�
��� and �
���	are determined by the following Eqs. (4) 
and (5), respectively. 

 
              �
��� = ���	�
�,
�, … ,

 ,�� 	|Θ) = �∑ �
�������� 	

�
�� � ∙ ���

�,					1 ≤ 	�	 ≤ �,             

where  ����� = ����,				1	 ≤ �	 ≤ �.                                                       (4) 
 

     �
��� = ���	�

��,

��, … ,
�| �� , Θ) = 	 �∑ ������

����
�����
�
�� �, 1 ≤ 	�	 ≤ �, 1	 ≤ t	 ≤ T − 1,   

where ����� = 1, 1	 ≤ �	 ≤ �.                                                           (5) 
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Therefore, �
(�) is determined by Eq. (6). 
 

�
��� = �����
�|O, Θ) = 	 �������(�)

∑ �������(�)
�
���

	,			1	 ≤ �	 ≤ �, 1	 ≤ � ≤ �.                           (6) 

 
����, �� is the probability of a transition from Ni to Nj at any time t, and indicates the probability of 

α�����������
����
�����, which is determined by Eq. (7) below. 
 

����, �� = 	 ��������������������(�)

∑ ∑ ������	
�
����������(�)	
�

��

�
	��

, 1 ≤ �	 ≤ � − 1, 1	 ≤ �, �	 ≤ �.                    (7) 

 
From the result, NewAij is equal to the probability of transition from Ni to Nj divided by the 

probability of transition to Ni. It is represented by Eq. (8) as follows. 
 


���� = 	∑ ��(�,�)
���
���

∑ ��(�)
���
���

, 1≤ i, j ≤n                                                         (8) 

 
NewBi(k) is equal to the probability of occurrence of an event moving from Ni to Ni,k divided by the 

probability of being at Ni. It is represented as follows.  
 


������ = 	∑ ��(�)
�
���	�.�.		����

∑ ��(�)
�
���

, 1≤ i ≤n, 1≤ k ≤|Ni|                                        (9) 

 
Finally, Aij and Bi(k) are updated as shown in Eq. (10), and reflects learning results for NewAij and 

NewBi(k), respectively. Here, weight (ω) can be applied to NewAij and NewBi(k) to adjust the reflection 
rate of the learning results. The weight has a value between 0 and 1. When the weight is 1, the transition 
probability is completely changed to the newly learned NewAij and NewBi(k) values. 

 
��� = �1 − ����� + 	�
����; 

��(�) = �1 − ����(�) + 	�
���(�);                                           (10) 
 
Whenever a new driving trajectory occurs, the above learning process is repeated to continuously 

update the transition probability for each node and the event occurrence probability at each node. 
 

4.4.2 Driving trajectory estimation strategy  
 

Based on the driving probability model described in the previous section, the TrafficApp determines 
the possible directions by predicting the driving route from the current position to the target position 
when the driver requests real-time information about a specific area using the TrafficApp. Then, it 
requests traffic information about the driving directions from the TDMS. The basic strategy is to select 
as the final visiting node the node with the highest arrival probability of the nodes that are closest to the 
target position as the final visiting node and request the traffic information on the driving directions 
from the final visiting node to the target position. However, if there is no learned information, or it the 
difference between the probabilities of arriving adjacent nodes is smaller than the threshold value (δ) set 
by the system, the node with the shortest path among the nodes adjacent to the target position is 
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selected as the final visiting node. The shortest path between all nodes can be found by using the 
information predefined in the TrafficApp. 

Let the node corresponding to the current position of the vehicle be S, and let the GPS coordinates of 
the target position selected by the driver be TGPS. First, find the node NT that is mapped to the TGPS 
by searching the hash search tree. Find the shortest distance from S to NT,k for all nodes NT,k (0 ≤ k ≤ NT |) 
adjacent to NT, including NT. Here, NT,0 = NT. Let Dist (a, b) be the shortest distance between a and b. 
The final visiting node NTPrev for reaching the TGPS is determined by the following algorithm. 

 
//RNetwork: Road Node Network  

//A: A matrix of transition probability between every pair of Nodes 

//SD: A matrix of shortest distance between every pair of Nodes 

FindFVN(S, TGPS, NT, RNetwork, A, SD) { 

find SP = NT,k such that min��,…,|��|
{������,��,�� + ����(��,� ,����)}; 

find MaxProb = max��,…,|��|
{����,�

};  

MP = NT,k of MaxProb;  

find MinProb = min��,…,|��|
{����,�

}; 

if |�� ���	 −������	| < 	! then NTPrev = SP; 

else NTPrev = MP; 

} 

 
Finally, the TrafficApp generates a request message in the following format and requests traffic 

information for the target position. 
 
TrafficRQST = {“RQST” || Target GPS || NID of Target Position || NID of Final Visiting Node ||  Timestamp};  

                         = {“REQUEST” || TGPS || NT || NTPrev || Timestamp}; 
 

 
Fig. 5. Approach to target position. 

 
In Fig. 5 above, the node being mapped is Ni because the target position is closer to Ni. The final node 

visited before reaching the target position is either Ni or Nk. In the case where the final visiting node is 
determined as Nk by the above algorithm, NT will be equal to Ni and NTPrev will be equal to Nk in the 
traffic information request message. Therefore, we determine the driving direction from Nk to Ni, and 
the TDMS searches for traffic information on the GPS closest to the target point among the traffic 
messages from vehicles moving from Nk to Ni and provides it to the vehicle. Second, in the case where 
the final visiting node is Ni, NT will be equal to Ni and NTPrev will be equal to Ni in the traffic information 
request message. This is a type of movement from Ni to Ni, and the traffic information on the GPS 
closest to the target position is searched and provided among the traffic messages from vehicles passing 
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by Ni while they are still near Ni. After all, the traffic information on the GPS closest to the target 
position is provided only from vehicles that pass by Ni, and which move from Ni to Nk. Therefore, the 
direction to reach the target position can be normally determined even if the NT and NTPrev values that 
correspond to the target position are the same. 

 
 

5. Traffic Data Management System 

In this section, we first describe a traffic information collection model that efficiently stores and 
manages traffic information collected from each vehicle. 

 
5.1 TDMS System Configuration 
 

Traffic data provided by each vehicle is divided into the TrafficMSG, which is a text message, and 
TrafficIMG, which includes acquired blackbox images. Because TrafficMSG and TrafficIMG have 
different transmission periods and file sizes, they are stored in separate distributed servers. All messages 
transmitted in real time from the TrafficAPP of vehicles are temporarily stored in a relational database 
(RDB) via a web server, and they are then transmitted to a data-processing pipeline (hereinafter referred 
to as DPP) to perform data refinement and classification. After correcting the traffic message, the 
TrafficMSG is stored in a message server (hereinafter referred to as MsgSV) and the TrafficIMG is stored 
in an image server (hereinafter referred to as ImgSV). The TrafficIMG is separated from the TrafficMSG 
and stored on a separate server as the TrafficIMG contains image files captured in the black box. 

When the driver requests traffic information for a specific location through the TrafficAPP, the web 
server sends a search query directly to MsgSV and ImgSV for the requested traffic information message, 
and the search result is sent to the trafficAPP of the vehicle via the web server. The system configuration 
of the proposed TDMS is shown in Fig. 6. 

 

 
Fig. 6. Configuration of TDMS. 

 
In this study, we employed MySQL for traffic message buffering and DPP for data correction and 

classification was implemented using Logstash. The message server for storing the TrafficMSG was 
implemented using Elasticsearch, while the server for storing the TrafficIMG was implemented using 
Mongo DB. We implemented the TrafficIMG storage server ted using a NoSQL-type Mongo DB to 
efficiently process a large number of files as the TrafficIMG includes image files. 
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5.2 Traffic Data Correction of DPP 
 

Regardless of the type, all messages transmitted in real time contain GPS coordinates, CNID, which is 
the road node ID mapped to GPS coordinates, and PNID, which is the previously visited road node ID. 
CNID and PNID are the main factors that determine the driving directions of the vehicle. However, it 
cannot be guaranteed that CNID and PNID are necessarily adjacent to each other owing to the message 
transmission period. That is, the driving directions cannot be clearly determined in the case where 
PNID is not adjacent to the CNID. Therefore, DPP checks the adjacency between CNID and PNID for 
all collected messages. In the case where they are not adjacent to each other, then it finds the node 
closest to CNID based on PNID, corrects the PNID value, and transmits the corrected messages to each 
server. The correction strategy in this case is that the PNID value is updated to the node adjacent to 
CNID among the nodes on the shortest path between PNID and CNID. Because the shortest path 
between the nodes is already predefined and stored in the DPP, finding and updating nodes adjacent to 
CNID can be quickly handled. Messages with corrected PNID values are delivered to their servers 
according to their message type. 

 
5.3 Traffic Data Management 
 

Traffic messages are corrected through the DPP. They are stored and managed on the MsgSV or the 
ImgSV depending on the message type. The MsgSV stores values of <GPS, CID, PID, Speed, 
Timestamp, Type and MSG>. They are indexed by time and CID in sequence and stored in the server. 
The ImgSV stores the transmitted image files with values of <GPS, CID, PID, Speed, Timestamp>, and 
is indexed by date. 

The traffic information message requested by the driver, TrafficRQST = {“REQUEST” || TGPS || NT || 
NTPrev|| TimestampR}, is passed directly to the MsgSV and the ImgSV via the web server. Messages 
satisfying the following condition among the messages with the same date stored in each server are 
searched, and the latest traffic information is provided to the driver. 

 
[(NT == CID) && (NTPrev == PID) && ((TimestampR – Timestamp) ≤ TH1) && (Dist(TGPS, GPS) ≤ TH2)] 
 
TH1 and TH2 are thresholds that are defined by the system. TH1 refers to the threshold for the time 

difference, and TH2 refers to the GPS distance difference. If there is no traffic data satisfying the above 
condition, it returns to the driver that there is no retrieved information. 

 
5.4 Advanced Exploit of Proposed Model  
 

In this study, every time a driver requests traffic information for a specific location, traffic 
information for the location is provided by predicting the driving directions. This can easily be 
improved by using more advanced automated driver-personalized traffic information services. That is, 
even if the driver does not request it manually, the TrafficAPP automatically predicts the driving 
directions and requests the TDMS for traffic information on the driving route ahead so that the driver 
can be provided with traffic conditions such as traffic congestion and accidents in advance for areas 
through which the vehicle is most likely to pass. This provides the driver with personalized traffic 
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information in advance according to the driving trajectory of each vehicle so that the driver can 
respond more quickly to traffic situations and make the required decisions for safer and more efficient 
driving. 

 
 

6. Simulated Performance 

In this section, we analyze the performance of the proposed model by performing various 
experiments. By focusing on the new main mechanisms proposed in this paper, we analyzed the 
performance of the hash search tree generation time and search time, real-time traffic information 
processing time of the TDMS, traffic information request message processing time, and the accuracy of 
driving direction prediction. In this experiment, we implemented the TDMS using one server, and we 
analyzed it as a performance criteria of one server. The server implementation utilizing the distributed 
server systems is beyond the scope of this paper, and will be discussed in future research. For the road 
information, in this study, we used the actual road node information of Seoul provided by the Ministry 
of Land, Infrastructure, and Transport, as well as the virtual nodes that were added. We used actual 
driving data obtained by two drivers driving for one month. The main experimental conditions and 
simulation parameters for the performance analysis are shown in Table 3. 

 
Table 3. Simulation parameters 

Item Parameter Value 
Road The # of real nodes 7539

The # of virtual nodes 38571
The total # of nodes 46110
Distance threshold for adding virtual nodes 100 m
The minimum distance between two adjacent 
nodes 

7.42 m

HS-tree The minimum threshold / maximum threshold of a 
terminal 

500 nodes / 800 nodes 

The length of hashcode 10 bits
TrafficAPP Mobile device environment Samsung Galaxy A8 

The # of cars 2
The total # of trajectories per car 50
The # of training trajectories per car 29 

TDMS System environment Window OS, Intel i7, 64 bits, 
3.4 GHz, 8G RAM 

The # of data records for sending to DPP 8000 data/min
The simulated # of TrafficMSG per second 50, 100, 150, 200, 500, 1000 
The simulated # of TrafficIMG per second 50, 100, 150, 200, 500 
The simulated # of TrafficRQST per second 50, 100, 150, 200, 500, (1000) 

Traffic message TrafficMSG size  32 bytes 
TrafficIMG size  32 bytes + image size (300–900 kB)  

 
In order to analyze the performance of the proposed hash search tree, we analyzed the search tree 

generation time and the tree searching time, and we compared the performance of the related research, 
the R-Tree and the kDB-tree. As shown in Fig. 7, the proposed HS-tree generation time is 600 ms, and 
the R-Tree generation time is 1550 ms. That is, the R-tree takes the longest time. 
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We analyzed the search time of the hash trees, was analyzed when the number of hash codes 
requested per second is 50, 100, 200, 300, and 1000, respectively. When searching for less than 100 hash 
codes per second, it took less than 10 ms for the three search tree modes. However, the search time of 
the proposed HS-tree is shortest, as shown in Fig. 7, when searching for more than 100 hash codes. 

Next, we analyzed the time taken to store the TrafficMSG and TrafficIMG provided by each vehicle in 
the TDMS and to process the driver’s request messages. The TrafficMSG is stored in the MsgSV 
implemented using ElastricSearch and the TrafficIMG is stored in the ImgSV implemented using 
MongoDB. For the experiment, when the randomly generated traffic messages in the smart device are 
transmitted to each server, the latency time to finish storing the messages is analyzed according to the 
number of messages per second. Because the TrafficIMG is transmitted less frequently than the 
TrafficMSG, the number of transmitted data messages per second is limited to 500. For the 
TrafficRQST processing time, the latency time to finish the response is analyzed according to the 
number of request messages per second. The driver sends a request message to ask for traffic 
information for a randomly selected area. 

 

           
 (a) (b) 
Fig. 7. HS-tree construction time (a) and search time (b).  

 

          
 (a) (b) 
Fig. 8. Latency time of TDMS: (a) MsgSV, (b) ImgSV. 

 
As shown in Fig. 8 above, the user request information processing time is much shorter than traffic 

data insertion. For the TrafficMSG, 336 ms is the time required for 100 messages per s, and 688 ms for 
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200 messages. It takes less than 1 s to finish storing up to 300 messages. However it takes 1780 ms for 
500 messages per s, and 3417 ms for 1000 messages, which means that a relatively long delay has 
occurred. For the response time for the driver request message, it takes 176 ms to send 100 messages, 
329 ms for 200 messages, and 843 ms for 500 messages. It takes less than 1 s to send up to 600 messages. 
However, for 1000 messages, it takes 1540 ms, which means that the delay is long. The average size of 
the image file included in the TrafficIMG is 500 KB, which is much larger than that of the TrafficMSG. 
It takes a relatively long time to process the file and shows a somewhat longer latency time than the 
TrafficMSG. For the latency time to store the TrafficIMG in the ImgSV, 100 messages takes 591 ms, 
while 150 messages takes 950 ms. It takes less than 1 s for up to 150 messages. However, 1242 ms is the 
time taken for 200 messages and 3220 ms the time for 500 messages, which means that the delay is long. 
For the processing time of the TrafficRQST in the ImgSV, 214 ms is taken for 100 messages, 315 ms for 
150 messages, 444 ms for 200 messages, and 1165 ms for 500 messages. It takes less than 1 s for up to 
450 messages. 

Finally, we analyzed the accuracy of the proposed driving prediction model. We analyzed the 
accuracy of three test sets: driving route with actual driving records (Test 1), driving route with no 
driving records (Test 2), and a driving route with a random mixture with/without driving records (Test 
3). When the traffic information for the target point on the preset driving route is requested after 
predetermining the driving route, the accuracy was determined by providing the same driving route 
data as the preset driving route. The accuracy is shown in Table 4. 

 
Table 4. Accuracy of driving trajectory estimation 

 
Test 1 

(Known trajectories) 
Test 2 

(Unknown trajectories)
Test 3 

(Mixed trajectories) 
Average 

Accuracy (%) 100 95 95 96.66 

 
The above experiment results show that the driving prediction using driving records is 100% accurate 

and the driving prediction using the shortest distance also provides a fairly high accuracy when there 
are no driving records. From the experiments, it is appropriate to determine the driving directions 
based on the shortest distance. 

 
 

7. Conclusion 

In this paper, we proposed a traffic information service model that can collect traffic information in 
real time from each vehicle by utilizing a smart device in the existing vehicle, and which provides 
information on a specific location that the user wanted to reach. To manage traffic information more 
efficiently, we proposed a new hash search tree that can effectively search for road nodes that 
correspond to GPS coordinates by indexing traffic information based on road nodes. In addition, we 
proposed a probability model that predicts the driving directions by learning the driver's driving 
records in order to provide the driver with the traffic information based on the predicted driving 
directions. We performed experiments, which show that the proposed model is able to efficiently 
process the traffic information collected from each vehicle, and the driving prediction model provides 



Traffic Information Service Model Considering Personal Driving Trajectories 

 

968 | J Inf Process Syst, Vol.13, No.4, pp.951~969, August 2017 

an accuracy of more than 96.7%. In future, we will continue to carry out research on various driver-
customized services based on the driving direction prediction for each driver, and we will continue to 
study the implementation of a distributed TDMS environment for large-scale real-time traffic information 
processing. 
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