• Title/Summary/Keyword: rnpA

Search Result 87, Processing Time 0.023 seconds

Effects of Base Changes at the Transcription Start Site on Stringent Control of rnpB in Escherichia coli

  • Choi, Hyun-Sook;Park, Jeong Won;Hong, Soon Kang;Lee, Kangseok;Lee, Younghoon
    • Molecules and Cells
    • /
    • v.26 no.2
    • /
    • pp.212-215
    • /
    • 2008
  • The GC-rich discriminator sequence between the -10 region and the transcription start site of the rnpB promoter is responsible for stringent control of M1 RNA synthesis. The rnpB promoter also contains a G nucleotide at the previously identified transcription start site. In this study, we examined by mutagenesis of G to A whether this +1G nucleotide is involved in the stringent response. We found that the change did not alter the stringent response. Since the +1 mutation might alter transcription initiation, we compared the transcription start sites of the wt and mutant promoters by primer extension analysis. Surprisingly, we found that wild type rnpB transcription starts at both the +1G position (70%) and the -1C position (30%), and that the +1A mutation led to transcription initiation exclusively at the -1C position. We also generated two transversion mutations at the -1 position, both of which led to transcription starting exclusively at that position. The -1G mutant promoter gave a stringent signal similar to the wild-type, whereas the -1A mutant generated a significantly less stringent signal. Base on these results, we propose that a short sequence, up to 7 bp downstream of the -10 region, is involved in the stringent response of the rnpB promoter.

The Preliminary Study for the evaluation of the Rehabilitation Nursing Program integrated with Day Care Program of Stroke Survivors (뇌졸중환자의 낮 병동 재활간호프로그램의 적용평가를 위한 예비연구)

  • Suh, Moon-Ja;Kang, Hyun-Sook;Lee, Myung-Hwa
    • The Korean Journal of Rehabilitation Nursing
    • /
    • v.3 no.1
    • /
    • pp.98-107
    • /
    • 2000
  • A Preliminary study for the evaluation of the Rehabilitation Nursing Program(RNP) implemented to the 25 stroke survivors at the Day Care Program Center of National Rehabilitation Hospital in Seoul was done at 1999. The purposes of this study was to assess the psychological effects as outcome-variables such as depression, powerlessness and self efficacy of the stroke survivors who were discharged from acute care hospitals. The Rehabilitation Nursing Program (RNP) integrated with the Day Care Program for rehabilitation was implemented and the psychological outcome variables were measured by 3 psychologic instruments of Zung Depression Scale, Millers's powerlessness and the Bandura's self efficacy scale. These instruments were translated into Korean and the contents validity and the reliability were tested. The subjects were 17 males and 8 females and 52% were aged over 51 years old and 24% were from 31 to 50 years old. Most of them (72%) had been educated more than high school level. The contents of RNP were 8 sessions composing of self-introduction, individualized assessment, health contract and feedback, management of depression, shaving experiences, effective communication, self efficacy teaching, health information, and daily care activities. This study found that the level of depression and the powerlessness were within average level and had not been changed the level of self efficacy after RNP were somewhat higher than before, but it was not changed significantly. According to the results, the psychological state of the subjects were not changed significantly. Only the level of self efficacy was a little improved after having the RNP. Based on theses results, the RNP should be focussed on the psychological nursing care and the psychological outcome variables were retested strictly with the enough sample size.

  • PDF

The Dharma of Nonsense-Mediated mRNA Decay in Mammalian Cells

  • Popp, Maximilian Wei-Lin;Maquat, Lynne E.
    • Molecules and Cells
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Mammalian-cell messenger RNAs (mRNAs) are generated in the nucleus from precursor RNAs (pre-mRNAs, which often contain one or more introns) that are complexed with an array of incompletely inventoried proteins. During their biogenesis, pre-mRNAs and their derivative mRNAs are subject to extensive cis-modifications. These modifications promote the binding of distinct polypeptides that mediate a diverse array of functions needed for mRNA metabolism, including nuclear export, inspection by the nonsense-mediated mRNA decay (NMD) quality-control machinery, and synthesis of the encoded protein product. Ribonucleoprotein complex (RNP) remodeling through the loss and gain of protein constituents before and after pre-mRNA splicing, during mRNA export, and within the cytoplasm facilitates NMD, ensuring integrity of the transcriptome. Here we review the mRNP rearrangements that culminate in detection and elimination of faulty transcripts by mammalian-cell NMD.

Identifying the cellular location of brain cytoplasmic 200 RNA using an RNA-recognizing antibody

  • Shin, Heegwon;Lee, Jungmin;Kim, Youngmi;Jang, Seonghui;Ohn, Takbum;Lee, Younghoon
    • BMB Reports
    • /
    • v.50 no.6
    • /
    • pp.318-322
    • /
    • 2017
  • Brain cytoplasmic 200 RNA (BC200 RNA) is a neuron-specific non-coding RNA, implicated in the inhibition of local synaptodendritic protein synthesis, and is highly expressed in some cancer cells. Although BC200 RNA has been shown to inhibit translation in vitro, the cellular location of this inhibition is unknown. In this study, we used a BC200 RNA-recognizing antibody to identify the cellular locations of BC200 RNA in HeLa cervical carcinoma cells. We observed punctate signals in both the cytoplasm and nucleus, and further discovered that BC200 RNA co-localized with the p-body decapping enzyme, DCP1A, and the heterogeneous nuclear ribonucleoprotein E2 (hnRNP E2). The latter is a known BC200 RNA-binding partner protein and a constituent of p-bodies. This suggests that BC200 RNA is localized to p-bodies via hnRNP E2.

A Pivot And Probe Algorithm(PARA) for Network Optimization

  • Moonsig Kang;Kim, Young-Moon
    • Korean Management Science Review
    • /
    • v.15 no.1
    • /
    • pp.1-12
    • /
    • 1998
  • This paper discusses a new algorithm, the PAPANET (Pivot And Probe Algorithm for NETwork optimization), for solving linear, capacitated linear network flow problem (NPs), PAPANET is a variation and specialization of the Pivot And Probe Algorithm (PAPA) developed by Sethi and Thompson, published in 1983-1984. PAPANET first solves an initial relaxed NP (RNP) with all the nodes from the original problem and a limited set of arcs (possibly all the artificial and slack arcs). From the arcs not considered in the current relaxation, we PROBE to identify candidate arcs that violate the current solution's dual constraints maximally. Candidate arcs are added to the RNP, and this new RNP is solved to optimality. This candidate pricing procedure and pivoting continue until all the candidate arcs price unfavorably and all of the dual constraints corresponding to the other, so-called noncandidate arcs, are satisfied. The implementation of PAPANET requires significantly fewer arcs and less solution CPU time than is required by the standard network simplex method implementation upon which it is based. Computational tests on randomly generated NPs indicate that our PAPANET implementation requires up to 40-50% fewer pivots and 30-40% less solution CPU time than is required by the comparable standard network simplex implementation from which it is derived.

  • PDF

1H, 15N and 13C resonance assignment and secondary structure prediction of ss-DNA binding protein 12RNP2 precursor, HP0827 from Helicobacter pylori

  • Jang, Sun-Bok;Ma, Chao;Chandan, Pathak Chinar;Kim, Do-Hee;Lee, Bong-Jin
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.15 no.1
    • /
    • pp.69-79
    • /
    • 2011
  • HP0827 has two RNP motif which is a very common protein domain involved in recognition of a wide range of ssRNA/DNA.We acquired 3D NMR spectra of HP0827 which shows well dispersed and homogeneous signals which allows us to assign 98% of all $^1H_N$, $^{15}N$, $^{13}C_{\alpha}$, $^{13}C_{\beta}$ and $^{13}C$=O resonances and 90% of all sidechain resonances. The sequence-specific backbone resonance assignment of HP0827 can be used to gain deeper insights into the nucleic acids binding specificity of HP0827 in the future study. Here, we report secondary structure prediction of HP0827 derived from NMR data. Additionally, ssRNA/DNA binding assay studies was also conducted. This study might provide a clue for exact function of HP0827 based on structure and sequence.

CD72 is a Negative Regulator of B Cell Responses to Nuclear Lupus Self-antigens and Development of Systemic Lupus Erythematosus

  • Takeshi Tsubata
    • IMMUNE NETWORK
    • /
    • v.19 no.1
    • /
    • pp.1.1-1.13
    • /
    • 2019
  • Systemic lupus erythematosus (SLE) is the prototypic systemic autoimmune disease characterized by production of autoantibodies to various nuclear antigens and overexpression of genes regulated by IFN-I called IFN signature. Genetic studies on SLE patients and mutational analyses of mouse models demonstrate crucial roles of nucleic acid (NA) sensors in development of SLE. Although NA sensors are involved in induction of antimicrobial immune responses by recognizing microbial NAs, recognition of self NAs by NA sensors induces production of autoantibodies to NAs in B cells and production of IFN-I in plasmacytoid dendritic cells. Among various NA sensors, the endosomal RNA sensor TLR7 plays an essential role in development of SLE at least in mouse models. CD72 is an inhibitory B cell co-receptor containing an immunoreceptor tyrosine-based inhibition motif (ITIM) in the cytoplasmic region and a C-type lectin like-domain (CTLD) in the extracellular region. CD72 is known to regulate development of SLE because CD72 polymorphisms associate with SLE in both human and mice and CD72-/- mice develop relatively severe lupus-like disease. CD72 specifically recognizes the RNA-containing endogenous TLR7 ligand Sm/RNP by its extracellular CTLD, and inhibits B cell responses to Sm/RNP by ITIM-mediated signal inhibition. These findings indicate that CD72 inhibits development of SLE by suppressing TLR7-dependent B cell response to self NAs. CD72 is thus involved in discrimination of self-NAs from microbial NAs by specifically suppressing autoimmune responses to self-NAs.

Whole-mount in situ Hybridization of Mitochondrial rRNA and RNase MRP RNA in Xenopus laevis Oocytes

  • Jeong, Sun-Joo
    • Animal cells and systems
    • /
    • v.2 no.4
    • /
    • pp.529-538
    • /
    • 1998
  • In order to analyze the intracellu1ar localization of specific RNA components of ribonucleoproteins (RNP) in Xenopus oocytes, a modified protocol of whole-mount in situ Hybridization is presented in this paper, Mitochondria specific 12S rRNA probe was used to detect the amplification and distribution of mitochondria in various stages of the oocyte life cycle, and the results were found to be consistent with previously known distribution of mitochondria. The results with other specific probes (U1 and U3 small nuclear RNAs, and 5S RNA) also indicate that this procedure is generally effective in localizing RNAs in RNP complexes even inside organelles. In addition, the RNA component of RNase MRP, the RNP with endoribo-nuclease activity, localize to the nucleus in various stages of the oocyte life cycle. Some of MRP RNA, however, were found to be localized to the special population of mitochondria near the nucleus, especially in the active stage of mitochondrial amplification. It suggests dual localization of RNase MRP in the nucleus and mitochondria, which is consistent with the proposed roles of RNase MRP in mitochondrial DNA replication and in rRNA processing in the nucleolus.

  • PDF

Optimization of Protoplast Isolation and Ribonucleoprotein/Nanoparticle Complex Formation in Lentinula edodes (표고버섯의 원형질체 분리 최적화와 RNPs/나노파티클 복합체 형성)

  • Kim, Minseek;Ryu, Hojin;Oh, Min Ji;Im, Ji-Hoon;Lee, Jong-Won;Oh, Youn-Lee
    • Journal of Mushroom
    • /
    • v.20 no.3
    • /
    • pp.178-182
    • /
    • 2022
  • Despite the long history of mushroom use, studies examining the genetic function of mushrooms and the development of new varieties via bio-molecular methods are significantly lacking compared to those examining other organisms. However, owing to recent developments, attempts have been made to use a novel gene-editing technique involving CRISPR/Cas9 technology and genetic scissors in mushroom studies. In particular, research is actively being conducted to utilize ribonucleoprotein particles (RNPs) that can be genetically edited with high efficiency without foreign gene insertion for ease of selection. However, RNPs are too large for Cas9 protein to pass through the cell membrane of the protoplasmic reticulum. Furthermore, guide RNA is unstable and can be easily decomposed, which remarkably affects gene editing efficiency. In this study, nanoparticles were used to mitigate the shortcomings of RNP-based gene editing techniques and to obtain transformants stably. We used Lentinula edodes (shiitake mushroom) Sanjo705-13 monokaryon strain, which has been successfully used in previous genome editing experiments. To identify a suitable osmotic buffer for the isolation of protoplast, 0.6 M and 1.2 M sucrose, mannitol, sorbitol, and KCl were treated, respectively. In addition, with various nanoparticle-forming materials, experiments were conducted to confirm genome editing efficiency via the formation of nanoparticles with calcium phosphate (CaP), which can be bound to Cas9 protein without any additional amino acid modification. RNPs/NP complex was successfully formed and protected nuclease activity with nucleotide sequence specificity.

Highly efficient genome editing via CRISPR-Cas9 ribonucleoprotein (RNP) delivery in mesenchymal stem cells

  • A Reum Han;Ha Rim Shin;Jiyeon Kweon;Soo Been Lee;Sang Eun Lee;Eun-Young Kim;Jiyeon Kweon;Eun-Ju Chang;Yongsub Kim;Seong Who Kim
    • BMB Reports
    • /
    • v.57 no.1
    • /
    • pp.60-65
    • /
    • 2024
  • The CRISPR-Cas9 system has significantly advanced regenerative medicine research by enabling genome editing in stem cells. Due to their desirable properties, mesenchymal stem cells (MSCs) have recently emerged as highly promising therapeutic agents, which properties include differentiation ability and cytokine production. While CRISPR-Cas9 technology is applied to develop MSC-based therapeutics, MSCs exhibit inefficient genome editing, and susceptibility to plasmid DNA. In this study, we compared and optimized plasmid DNA and RNP approaches for efficient genome engineering in MSCs. The RNP-mediated approach enabled genome editing with high indel frequency and low cytotoxicity in MSCs. By utilizing Cas9 RNPs, we successfully generated B2M-knockout MSCs, which reduced T-cell differentiation, and improved MSC survival. Furthermore, this approach enhanced the immunomodulatory effect of IFN-r priming. These findings indicate that the RNP-mediated engineering of MSC genomes can achieve high efficiency, and engineered MSCs offer potential as a promising therapeutic strategy.