Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (RS-2023-00260462, 2018R1A5A2020732, 2021R1C1C1007162, and 2023R1A2C2004057).
References
- Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339, 823-826 https://doi.org/10.1126/science.1232033
- Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 https://doi.org/10.1126/science.1231143
- Xiao A, Wang Z, Hu Y et al (2013) Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res 41, e141
- Hsu PD, Lander ES and Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262-1278 https://doi.org/10.1016/j.cell.2014.05.010
- Ma X, Chen X, Jin Y et al (2018) Small molecules promote CRISPR-Cpf1-mediated genome editing in human pluripotent stem cells. Nat Commun 9, 1303
- DeWitt MA, Magis W, Bray NL et al (2016) Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci Transl Med 8, 360ra134
- Zhang Z, Zhang Y, Gao F et al (2017) CRISPR/Cas9 genome-editing system in human stem cells: current status and future prospects. Mol Ther Nucleic Acids 9, 230-241 https://doi.org/10.1016/j.omtn.2017.09.009
- Cox DB, Platt RJ and Zhang F (2015) Therapeutic genome editing: prospects and challenges. Nat Med 21, 121-131 https://doi.org/10.1038/nm.3793
- Kim S, Kim D, Cho SW, Kim J and Kim JS (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24, 1012-1019 https://doi.org/10.1101/gr.171322.113
- Liang X, Potter J, Kumar S et al (2015) Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol 208, 44-53 https://doi.org/10.1016/j.jbiotec.2015.04.024
- Cho SW, Kim S, Kim JM and Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31, 230-232 https://doi.org/10.1038/nbt.2507
- Pittenger MF, Discher DE, Peault BM, Phinney DG, Hare JM and Caplan AI (2019) Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med 4, 22
- Reinders ME, de Fijter JW, Roelofs H et al (2013) Autologous bone marrow-derived mesenchymal stromal cells for the treatment of allograft rejection after renal transplantation: results of a phase I study. Stem Cells Transl Med 2, 107-111 https://doi.org/10.5966/sctm.2012-0114
- Le Blanc K, Frassoni F, Ball L et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371, 1579-1586 https://doi.org/10.1016/S0140-6736(08)60690-X
- Cortez-Toledo E, Rose M, Agu E et al (2019) Enhancing Retention of human bone marrow mesenchymal stem cells with prosurvival factors promotes angiogenesis in a mouse model of limb ischemia. Stem Cells Dev 28, 114-119 https://doi.org/10.1089/scd.2018.0090
- Zhao K and Liu Q (2016) The clinical application of mesenchymal stromal cells in hematopoietic stem cell transplantation. J Hematol Oncol 9, 46
- Le Blanc K, Tammik C, Rosendahl K, Zetterberg E and Ringden O (2003) HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 31, 890-896 https://doi.org/10.1016/S0301-472X(03)00110-3
- Ankrum JA, Ong JF and Karp JM (2014) Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 32, 252-260
- Park J, Bae S and Kim JS (2015) Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites. Bioinformatics 31, 4014-4016 https://doi.org/10.1093/bioinformatics/btv537
- Lu Y and Zhu JK (2017) Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol Plant 10, 523-525 https://doi.org/10.1016/j.molp.2016.11.013
- Lee BC and Kang KS (2020) Functional enhancement strategies for immunomodulation of mesenchymal stem cells and their therapeutic application. Stem Cell Res Ther 11, 397
- Fu Y, Foden JA, Khayter C et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31, 822-826 https://doi.org/10.1038/nbt.2623
- Schumann K, Lin S, Boyer E et al (2015) Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc Natl Acad Sci U S A 112, 10437-10442 https://doi.org/10.1073/pnas.1512503112
- Kim HJ and Park JS (2017) Usage of human mesenchymal stem cells in cell-based therapy: advantages and disadvantages. Dev Reprod 21, 1-10 https://doi.org/10.12717/DR.2017.21.1.001
- Crippa S, Conti A, Vavassori V et al (2022) Mesenchymal stromal cells improve the transplantation outcome of CRISPR-Cas9 gene-edited human HSPCs. Mol Ther 30, 3333
- Xu X, Gao D, Wang P et al (2018) Efficient homology-directed gene editing by CRISPR/Cas9 in human stem and primary cells using tube electroporation. Sci Rep 8, 11649
- Fierro FA, Kalomoiris S, Sondergaard CS and Nolta JA (2011) Effects on proliferation and differentiation of multipotent bone marrow stromal cells engineered to express growth factors for combined cell and gene therapy. Stem Cells 29, 1727-1737 https://doi.org/10.1002/stem.720
- Mancanares ACF, Cabezas J, Manriquez J et al (2020) Edition of prostaglandin E2 receptors EP2 and EP4 by CRISPR/Cas9 technology in equine adipose mesenchymal stem cells. Animals (Basel) 10, 1078
- Lim J, Heo J, Yu HY et al (2021) Small-sized mesenchymal stem cells with high glutathione dynamics show improved therapeutic potency in graft-versus-host disease. Clin Transl Med 11, e476
- Park DS, Yoon M, Kweon J, Jang AH, Kim Y and Choi SC (2017) Targeted base editing via RNA-Guided cytidine deaminases in Xenopus laevis embryos. Mol Cells 40, 823-827
- Richardson CD, Ray GJ, DeWitt MA, Curie GL and Corn JE (2016) Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol 34, 339-344 https://doi.org/10.1038/nbt.3481
- Kweon J, Kim DE, Jang AH and Kim Y (2018) CRISPR/Cas-based customization of pooled CRISPR libraries. PLoS One 13, e0199473
- Kweon J, Jang AH, Shin HR et al (2020) A CRISPR-based base-editing screen for the functional assessment of BRCA1 variants. Oncogene 39, 30-35 https://doi.org/10.1038/s41388-019-0968-2
- Kim D, Kim DE, Lee G, Cho SI and Kim JS (2019) Genome-wide target specificity of CRISPR RNA-guided adenine base editors. Nat Biotechnol 37, 430-435 https://doi.org/10.1038/s41587-019-0050-1
- Kim D, Bae S, Park J et al (2015) Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods 12, 237-243 https://doi.org/10.1038/nmeth.3284
- Bae S, Park J and Kim JS (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473-1475 https://doi.org/10.1093/bioinformatics/btu048
- Park J, Childs L, Kim D et al (2017) Digenome-seq web tool for profiling CRISPR specificity. Nat Methods 14, 548-549 https://doi.org/10.1038/nmeth.4262