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A Pivot And Probe Algorithm(PARA)
for Network Optimization

Moonsig Kang* - Young-Moon Kim*

ABSTRACT

This paper discusses a new algorithm, the PAPANET (Pivot And Probe Algorithm for NETwork
optimization), for solving linear, capacitated linear network flow problem (NPs). PAPANET is a
variation and specialization of the Pivot And Probe Algorithm (PAPA) developed by Sethi and
Thompson, published in 1983-1984. PAPANET first solves an initial relaxed NP (RNP) with all the
nodes from the original problem and a limited set of arcs (possibly all the artificial and slack arcs).
From the arcs not considered in the current relaxation, we PROBE to identify candidate arcs that violate
the current solution’s dual constraints maximally. Candidate arcs are added to the RNP, and this new
RNP is solved to optimality. This candidate pricing procedure and pivoting continue until all the
candidate arcs price unfavorably and all of the dual constraints corresponding to the other, so-called
noncandidate arcs, are satisfied. The implementation of PAPANET requires significantly fewer arcs and
less solution CPU time than is required by the standard network simplex method implementation upon
which it is based. Computational tests on randomly generated NPs indicate that our PAPANET
implementation requires up {o 40-50% fewer pivots and 30-40% less solution CPU time than is required

by the comparable standard network simplex implementation from which it is derived.

|  Introduction Aronson, 1989), a great deal of research on network
theory and algorithmic development has been

performed over the years (Aderohunmu and

Because of its important applications, ie., Aronson, 1993; Aronson and Chen, 1986;
communication systems, inventory systems, Balachandran and Thompson, 1975a, 1975b,
traffic systems, and many other areas (eg., see 1975¢, 1975d; Barr, Glover and Klingman,
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1970; Bazaraa, Jarvis and Sherali, 1990;
Fullkerson, 1961 ; Kamey and Klingman,
1976; Kennington and Helgason, 1980;
Srinivasan and Thompson, 1973, 1976, 1977).
Among these, a few (e.g., Aderohunmu and
Aronson, 1993; Aronson and Chen, 1986) have
attempted to reduce the active problem size
as a means of increasing algorithmic
efficiency. For linear programming problems
(LPs), see Karwan et al. (1983). In optimizing
network flow problems, many arcs might
never enter the basis, remaining nonbasic at
zero flow throughout the entire
optimization process. Therefore, identifying
and removing such arcs from the problem
would reduce problem size without affecting
attainment of an optimum, and thus be an
effective way to improve computational
efficiency.

The Pivot And Probe Algorithm(PAPA) for
solving Linear Programming(LP) problems was
introduced by Sethi and Thompson (1983, 1984)
and Sethi(1983). Later, Thompson and Sethi
(1986) developed a specialized implementation of
PAPA to solve
transportation problems, and Sethi, Thompson
and Hung (1990) applied PAPA to the LP dual,
which may be specialized for network flow

constrained  generalized

problems.

The basic ideas of PAPA is to reduce the
active problem size by retaining only small
number of constraints or dual variables that
may potentially be included in an optimal
" solution to an LP. Sethi and Thompson(1933)

defined a noncandidate (primal) constraint/

(dual) variable as one that is never used
during the entire optimization process of an
LP. Similarly, a candidate (primal) constraint/
(dual) variable was defined as one that is
actually used at least once while optimizing.
Keeping only candidate constraints/variables
reduces the problem size, and reduces pricing
and pivoting effort.  Recently, Aronson
and Kang(1993) introduced the general idea
of applying the Pivot and Probe Algorithm
to pure Network flow Problems (NPs).
Here, this paper presents a more complete,
detailed algorithmic description of the
method as well as preliminary computational
results.

We assume that the reader has a grasp of
the definitions and methods of linear
programming (e.g., see Bazaraa, Jarvis and
Sherali, 1990; Simonnard, 1966) and network
optimization (e.g., see Bazaraa, Jarvis and
Sherali, 1990; Bertsekas, 1991; Evans and
Minieka, 1992; Glover, Klingman and Philips,
1992; Kennington and Helgason, 1980; Murty,
1976).

The paper is organized as follows: A brief
description of Pivot and Probe Algorithm for
linear programming problems is presented in
Section 2. In Section 3, this paper illustrates
the PAPANET, a Pivot and Probe Algorithm
for NETwork optimization. Preliminary
computational results are discussed in Section
4. Section 5 contains our conclusions and

potential further directions for the research.
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Il. The Pivot and Probe
Algorithm for Linear
Programming

2.1 Algorithm Description

Consider a linear program defined as

follows:

max z = cX
st.t Ax = b (1)
x= 0

where A is an m * n matrix , b is an m
vector, and ¢ and X are n vectors.
Inequalities may be converted to equalities by
including slack or surplus variables. PAPA
first solves a relaxed linear program(RLP)
that consists of initial candidate constraints.
An initial candidate constraint is one for
which, in the initial solution, there is a
minimum ratio found for one of its row’'s
elements and the variable, for which the
minimum ratio occurs, prices favorably by a
standard simplex method. To enforce
finiteness of each RLP, a regularization
constraint, ex<M, where M is a large
number and e=(1, 1 ,...1), is added to the
RLP. Once an optimal solution to the RLP is
found, the PAPA probes to find a set of most
violated constraints from the noncandidate
constraints (not in the RLP). The Probe step
identifies the piercing points of violated
constraints, if any, on the line segment

between any feasible point of the original LP,

initially x=0, and the current RLP optimum
which is usually infeasible to the original, primal
problem. Noncandidate constraints are said to
be violated if they are not satisfied by the
current solution, ie, ax"» b, where x° is the
current solution to RLP. Once the piercing
points are identified, a set of constraints, called
the most violated constraints, containing the
plercing points closest to the feasible point, are
added to the RLP, which may then be solved to
optimality using dual simplex pivots. The most
piercing point found while probing is a feasible
point to the original LP and may be utilized by
later probes. This procedure continues until the
probe cannot find any violated noncandidate

constraint.
2.2 PAPA Example Problem

Consider the LP maximization problem with
8 constraints and 2 variables shown
graphically in Figure 1. PAPA starts with
initial RLP consisting of only constraints 1
and 2 and a standard, primal simplex method
obtains point A as its optimum. Probing
from point A to the origin, 0, identifies point
B as the most piercing point and constraint 3
as the most violated constraint (note that
point B is a feasible point). Once constraint
3 is added to the RLP, point C is found to be
an optimum to the RLP. From point C,
probing to the origin identifies constraint 4 as
its most violated constraint, and probing to
the previous most piercing point, B, identifies
constraint 5. After adding constraints 4 and 5

to RLP, point E is found to be an optimum.
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Objective

Figure 1. Example Probiem

Point E is the optimal solution to the
original LP because: 1) it is feasible point;
and 2) the feasible region is convex. Thus,
probing from point E to any other feasible
point cannot pierce any violated constraint.
Therefore, all noncandidate const~ raints are
satisfied by point E.

. The Pivot and Probe
Algorithm for Network
Optimization

3.1 Algorithm Development

First we note that it is possible to apply
the PAPA to the dual of an Network problem

(NP), and in doing so, one may develop
candidate lists of arcs (columns) to be
Then, a
primal network simplex approach may be
used to reoptimize the Relaxed NP (RNP).

The capacitated, minimum cost network flow

considered in the primal problem.

problem (NP) may be expressed as:
Min 2 CiXs, G, §) € A,
S.t, ijﬁ - Z}Xij =1, G, (G, 1) €A

i€ N, (2)
0<x3 = uw (,) €A,

where A denotes the set of arcs, N

denotes the set of nodes, 1 denotes the
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requirement of node i (positive for a supply
node, negative for a demand node, and zero
for a transshipment node), ¢j is the unit cost
of arc (i, j), from node i to node j, and uj is
the capacity of arc (i, j). We assume that
lower bounds of all arcs are zero (otherwise,
a simple transformation is required).
PAPANET first forms an initial relaxed
network problem (RNP) with the entire node
set and a set of few arcs, possibly all
We omit the

regularization constraint (ex < M), because a

artificial and slack arcs.

capacitated network flow problem cannot be
unbounded. In any iteration, let I be the
index set of arcs that form the current RNP;
R be the index set of arcs not considered; w
be a dual feasible point; and u be the current
optimal dual solution of the RNP. Let H

denote the index set of the violated variables:

H={Gdluw-u>c¢gl Gj) <R
and i, j€ N (3)

and let p be any point between w and u,
which may be written as
p={(1-k)w+kuk €[0, 1] (4)

A probe is the line segment between w
and u, ie, the set of all such vectors p
between a dual feasible point and the current
RNP dual solution. Then the piercing point
of the line segment (probe) and hyperplane h
defined by dual constraint h = (i, j) € H is
determined by

kn = (Wwi- wi—cg )/ (wi - wy — @ + 45 ),

G4, € H 6)

A lower value of k, indicates that the
hyperplane is closer to the feasible point w.
In the PROBE step, we identify the closest
hyperplane to w and such a hyperplane is
called the most violated dual constraint.
Formally, a dual constraint h*® € H said to
be most violated if

ke =min{kn | h € H }. (6)

If w = 0, indicating that we probe to the

origin, then (5) simplifies to

kn=cj/ (w-w), G,j)€H @D

Then, the evaluation of kwn in (6) 1is
equivalent to the standard simplex pricing
formula to identify a most favorable, nonbasis
arc to enter the basis of NP (2), that is, find
h' = (i, j)" such that

max {u-u - cgl, 8

where (i, j) is nonbasic with zero flow.
The piercing point, p’, of the hyperplane h’,
called the most piercing point, is feasible and

is given by

p = (- kn)w + ku (9

The arc, say (i, j)', whose corresponding
dual constraint is the most violated one, is
then added to the RNP and the index sets of
I and R are updated as:
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I =1U¢j)
R=R ~ G j)

where ~ denotes set subtraction. Note that
we need not probe arcs that are nonbasic at
capacity because they must be in the RNP by
definition.

Following each probe, the new RNP is
solved by a standard, primal network simplex
method. The arcs in set R (not in the RNP)
cannot be involved in any pivoting activity.
Therefore, noncandidate arcs in set R never
influence the basis or the value of an optimal
primal or dual solution of any RNP. Thus,
we could manage the noncandidate arcs
separately and consider only the candidate
arcs of the RNP. Of course, one arc list
with flags or pointers is generally sufficient
in managing the arcs in both sets I and R.
In the next section, this paper presents a
detailed algorithmic statement of PAPANET.

3.2 Algorithm Statement

The Pivot and Probe Algorithm for
Network optimization, PAPANET, may be
stated as follows:

Step 1: Initiahization

Use an all artificial/slack start. Calculate
the current RNP dual solution u. Let
w=0 be the initial feasible solution to the
original NP; I denote the current set of

arcs in RNP, and R the remaining set of

arcs.
Step 2: Probe

Find all violated primal variables (arcs =
dual constraints), ie., define set H from
R. It is possible to identify a set of
limited size. If H is empty, then the
solution satisfies all dual constraints of
set R.
Therefore, the current primal optimal
solution is optimal to the original
NP. Terminate. Otherwise, use (5) and
(6) to identify the most violated dual
constraint(s) and its (their) corresponding
arc(s) in H.
Add a subset of the arc(s) of I, delete
the arc(s) from R. Update feasible point
1

w using (9) or retain several as w,

wo..wo
Step 3- Pivot

Solve the RNP and obtain a new dual

solution u. Return to Step 2.

The algorithm converges as long as the
network simplex method used in Step 3
converges, since, in the worst case, the RNP

consists of all the arcs of the original NP.

IV. PAPNET Implementation

This paper developed and implemented the
Pivot And Probe Algorithm for NETwork
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optimization in Fortran (F77) on an IBM
RS/6000 Model 340 workstation. The
implementation was performed by modifying
an efficient network simplex code, MINIC
(Sun, 1986), by altering its pricing operation
and adding a PROBE subroutine.

For RNP, PAPANET utilizes an all
artificial start that includes the entire node
set and all the artificial and slack arcs.
PROBE 1is called to determine the candidate
arcs that are to be added to RNP, which is
The method
iterates untii PROBE cannot obtain any

solved again to optimality.
candidate arc. In large problems, we set
PROBE to identify multiple arcs to enter
RNP. Using PAPANET, we can solve NPs
with a significantly reduced number of arcs
and pivots, resulting in an substantial
computational time savings over a standard,
network simplex implementation.

We performed preliminary tests on
randomly generated capacitated network flow
problems by NETGEN (Klingman, Napier and
Stutz, 1974). The preliminary test results are
shown i1n Table 1. We solved square
transportation problems, i.e., half supply nodes
and half demand nodes. The capacities
(ranging from 1 to 1000) and costs (ranging
from 1 to 100) of all arcs were generated
from integer uniform distributions. We initially
set PROBE to find at most, as many
candidate arcs as the number of nodes, and
up to 300 arcs thereafter. Cyclic pricing was
used in both MINIC and PAPANET. For

both, the first favorably priced arc enters the

basis. PAPANET has a flag, STATUS(),
indicating whether an arc j is candidate
(STATUS(G)=1} or noncandidate (STATUS()
=0).

In Table 1, the columns entitled "CPU
Time” are the solution CPU times in seconds.
The total pivot counts required to obtain an
optimum are shown in columns "NO. Pivs”.
Under PAPANET, "NO. Arcs” indicates that
the total number of arcs that are candidate
(in RNP) at the optimum and "NO. Probe” is
the number PROBEs taken. In Table 2, we
show a comparison of the CPU times and
pivot counts between PAPANET and MINIC.
The first four columns are ratios; the last
two indicate the savings of PAPANET over
MINIC. The results indicate that PAPANET
effectively reduces the problem size (fewer
arcs than the original NP) and reduces the
pivot count, which result in an overall
savings of computational time. For example,
in Problem 10 having 2000 nodes and 100,000
arcs, only 30% of the arcs are needed by
PAPANET resulting in 46% of the pivots
required by MINIC and an overall time
savings of 38% over MINIC. Figures 2 and
3 graphically show the number of pivots and
the solution CPU times, respectively, required
by both implementations plotted by the
number of arcs (effectively the problem
density). Note that the efficiency of
PAPANET increases as the problem size

increases.
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V. Conclusions and Future
Research

This paper has presented a new algorithm,
PAPANET, to solve minimum cost,

capacitated, network flow problems.

Our

preliminary computational results demonstrate

its efficiency over an equivalent, network

simplex implementation, especially in solving

larger problems.

Table 1. Computational Results of Solution CPU Times and Pivot Counts

Problem size MINIC PAPANET
Number of CPU No. CPU No. No. No.
Prob Nodes Arcs Times Pivs Time Pivs Arcs Probe
1 2000 4,000 410 13048 310 9398 334 8
2 2000 6,000 7.12 20191 526 13674 4072 9
3 2000 8,000 953 25666 595 15816 4632 10
4 2000 10,000 11.48 30165 78 1849% 5298 9
5 2000 15,000 16.09 43097 1038 24338 6766 9
6 2000 20,000 18.63 48513 12.28 27407 8190 10
7 2000 25,000 2067 56974 1201 29712 9377 9
8 2000 40,000 26.00 63042 15678 33875 13182 9
9 2000 80,000 36.32 91536 2208 43189 24586 11
10 2000 100,000 36.18 98678 2358 45562 30277 11
Table 2. Comparisan of The Computational Results (PAPANET vs. MINIC)
MINIC/PAPANET PAPANET/MINIC SAVING OVER MINIC
CpPU No. CPU No CPU No.
Prob Times Pivs. Time Pivs. Times Pivs.
1 1.323 1.388 0.756 0.720 24.39% 271.97%
2 1.3%4 1477 0.739 0677 26.12% 32.28%
3 1.602 1.623 0.624 0.616 3757% 38.38%
4 1.461 1.631 0.685 0613 31.53% 38.68%
5 1550 1.771 0.645 0.565 ' 35.49% 43.53%
6 1517 1.770 0.659 0.565 34.08% 4351%
7 1.721 1918 0.581 0.522 41.90% 47.85%
8 1.646 2.009 0.607 0.498 39.31% 50.21%
9 1.581 2.119 0.633 0.472 36.73% 52.82%
10 1619 2.166 0.618 0.462 38.24% 53.83%
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One and  computational

improvement we

algorithmic
intend to pursue is the
dropping of candidate arcs from the R set
during the Probe step. See Sethi(1983) and

implementation details. PAPANET is a good
candidate for parallel implementations, because
probing may be

continuous, synchronous

performed, even while pivoting. Our future

Sethi and Thompson (1983, 1984) for LP work will focus on improved algorithms and
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implementations, both serial and parallel.
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