• Title/Summary/Keyword: rnn(recurrent neural network)

Search Result 232, Processing Time 0.022 seconds

System Identification Using Hybrid Recurrent Neural Networks (Hybrid 리커런트 신경망을 이용한 시스템 식별)

  • Choi Han-Go;Go Il-Whan;Kim Jong-In
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.1
    • /
    • pp.45-52
    • /
    • 2005
  • Dynamic neural networks have been applied to diverse fields requiring temporal signal processing. This paper describes system identification using the hybrid neural network, composed of locally(LRNN) and globally recurrent neural networks(GRNN) to improve dynamics of multilayered recurrent networks(RNN). The structure of the hybrid nework combines IIR-MLP as LRNN and Elman RNN as GRNN. The hybrid network is evaluated in linear and nonlinear system identification, and compared with Elman RNN and IIR-MLP networks for the relative comparison of its performance. Simulation results show that the hybrid network performs better with respect to the convergence and accuracy, indicating that it can be a more effective network than conventional multilayered recurrent networks in system identification.

  • PDF

Nonlinear Adaptive Prediction using Locally and Globally Recurrent Neural Networks (지역 및 광역 리커런트 신경망을 이용한 비선형 적응예측)

  • 최한고
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.139-147
    • /
    • 2003
  • Dynamic neural networks have been applied to diverse fields requiring temporal signal processing such as signal prediction. This paper proposes the hybrid network, composed of locally(LRNN) and globally recurrent neural networks(GRNN), to improve dynamics of multilayered recurrent networks(RNN) and then describes nonlinear adaptive prediction using the proposed network as an adaptive filter. The hybrid network consists of IIR-MLP and Elman RNN as LRNN and GRNN, respectively. The proposed network is evaluated in nonlinear signal prediction and compared with Elman RNN and IIR-MLP networks for the relative comparison of prediction performance. Experimental results show that the hybrid network performs better with respect to convergence speed and accuracy, indicating that the proposed network can be a more effective prediction model than conventional multilayered recurrent networks in nonlinear prediction for nonstationary signals.

Improvement of Speech/Music Classification Based on RNN in EVS Codec for Hearing Aids (EVS 코덱에서 보청기를 위한 RNN 기반의 음성/음악 분류 성능 향상)

  • Kang, Sang-Ick;Lee, Sang Min
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.2
    • /
    • pp.143-146
    • /
    • 2017
  • In this paper, a novel approach is proposed to improve the performance of speech/music classification using the recurrent neural network (RNN) in the enhanced voice services (EVS) of 3GPP for hearing aids. Feature vectors applied to the RNN are selected from the relevant parameters of the EVS for efficient speech/music classification. The performance of the proposed algorithm is evaluated under various conditions and large speech/music data. The proposed algorithm yields better results compared with the conventional scheme implemented in the EVS.

Sequence-Based Travel Route Recommendation Systems Using Deep Learning - A Case of Jeju Island - (딥러닝을 이용한 시퀀스 기반의 여행경로 추천시스템 -제주도 사례-)

  • Lee, Hee Jun;Lee, Won Sok;Choi, In Hyeok;Lee, Choong Kwon
    • Smart Media Journal
    • /
    • v.9 no.1
    • /
    • pp.45-50
    • /
    • 2020
  • With the development of deep learning, studies using artificial neural networks based on deep learning in recommendation systems are being actively conducted. Especially, the recommendation system based on RNN (Recurrent Neural Network) shows good performance because it considers the sequential characteristics of data. This study proposes a travel route recommendation system using GRU(Gated Recurrent Unit) and Session-based Parallel Mini-batch which are RNN-based algorithm. This study improved the recommendation performance through an ensemble of top1 and bpr(Bayesian personalized ranking) error functions. In addition, it was confirmed that the RNN-based recommendation system considering the sequential characteristics in the data makes a recommendation reflecting the meaning of the travel destination inherent in the travel route.

Forecasting realized volatility using data normalization and recurrent neural network

  • Yoonjoo Lee;Dong Wan Shin;Ji Eun Choi
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.1
    • /
    • pp.105-127
    • /
    • 2024
  • We propose recurrent neural network (RNN) methods for forecasting realized volatility (RV). The data are RVs of ten major stock price indices, four from the US, and six from the EU. Forecasts are made for relative ratio of adjacent RVs instead of the RV itself in order to avoid the out-of-scale issue. Forecasts of RV ratios distribution are first constructed from which those of RVs are computed which are shown to be better than forecasts constructed directly from RV. The apparent asymmetry of RV ratio is addressed by the Piecewise Min-max (PM) normalization. The serial dependence of the ratio data renders us to consider two architectures, long short-term memory (LSTM) and gated recurrent unit (GRU). The hyperparameters of LSTM and GRU are tuned by the nested cross validation. The RNN forecast with the PM normalization and ratio transformation is shown to outperform other forecasts by other RNN models and by benchmarking models of the AR model, the support vector machine (SVM), the deep neural network (DNN), and the convolutional neural network (CNN).

Image Caption Generation using Recurrent Neural Network (Recurrent Neural Network를 이용한 이미지 캡션 생성)

  • Lee, Changki
    • Journal of KIISE
    • /
    • v.43 no.8
    • /
    • pp.878-882
    • /
    • 2016
  • Automatic generation of captions for an image is a very difficult task, due to the necessity of computer vision and natural language processing technologies. However, this task has many important applications, such as early childhood education, image retrieval, and navigation for blind. In this paper, we describe a Recurrent Neural Network (RNN) model for generating image captions, which takes image features extracted from a Convolutional Neural Network (CNN). We demonstrate that our models produce state of the art results in image caption generation experiments on the Flickr 8K, Flickr 30K, and MS COCO datasets.

Document Classification using Recurrent Neural Network with Word Sense and Contexts (단어의 의미와 문맥을 고려한 순환신경망 기반의 문서 분류)

  • Joo, Jong-Min;Kim, Nam-Hun;Yang, Hyung-Jeong;Park, Hyuck-Ro
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.7
    • /
    • pp.259-266
    • /
    • 2018
  • In this paper, we propose a method to classify a document using a Recurrent Neural Network by extracting features considering word sense and contexts. Word2vec method is adopted to include the order and meaning of the words expressing the word in the document as a vector. Doc2vec is applied for considering the context to extract the feature of the document. RNN classifier, which includes the output of the previous node as the input of the next node, is used as the document classification method. RNN classifier presents good performance for document classification because it is suitable for sequence data among neural network classifiers. We applied GRU (Gated Recurrent Unit) model which solves the vanishing gradient problem of RNN. It also reduces computation speed. We used one Hangul document set and two English document sets for the experiments and GRU based document classifier improves performance by about 3.5% compared to CNN based document classifier.

A Study on Word Sense Disambiguation Using Bidirectional Recurrent Neural Network for Korean Language

  • Min, Jihong;Jeon, Joon-Woo;Song, Kwang-Ho;Kim, Yoo-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.4
    • /
    • pp.41-49
    • /
    • 2017
  • Word sense disambiguation(WSD) that determines the exact meaning of homonym which can be used in different meanings even in one form is very important to understand the semantical meaning of text document. Many recent researches on WSD have widely used NNLM(Neural Network Language Model) in which neural network is used to represent a document into vectors and to analyze its semantics. Among the previous WSD researches using NNLM, RNN(Recurrent Neural Network) model has better performance than other models because RNN model can reflect the occurrence order of words in addition to the word appearance information in a document. However, since RNN model uses only the forward order of word occurrences in a document, it is not able to reflect natural language's characteristics that later words can affect the meanings of the preceding words. In this paper, we propose a WSD scheme using Bidirectional RNN that can reflect not only the forward order but also the backward order of word occurrences in a document. From the experiments, the accuracy of the proposed model is higher than that of previous method using RNN. Hence, it is confirmed that bidirectional order information of word occurrences is useful for WSD in Korean language.

A Gait Phase Classifier using a Recurrent Neural Network (순환 신경망을 이용한 보행단계 분류기)

  • Heo, Won ho;Kim, Euntai;Park, Hyun Sub;Jung, Jun-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.518-523
    • /
    • 2015
  • This paper proposes a gait phase classifier using a Recurrent Neural Network (RNN). Walking is a type of dynamic system, and as such it seems that the classifier made by using a general feed forward neural network structure is not appropriate. It is known that an RNN is suitable to model a dynamic system. Because the proposed RNN is simple, we use a back propagation algorithm to train the weights of the network. The input data of the RNN is the lower body's joint angles and angular velocities which are acquired by using the lower limb exoskeleton robot, ROBIN-H1. The classifier categorizes a gait cycle as two phases, swing and stance. In the experiment for performance verification, we compared the proposed method and general feed forward neural network based method and showed that the proposed method is superior.

Recurrent Neural Network with Backpropagation Through Time Learning Algorithm for Arabic Phoneme Recognition

  • Ismail, Saliza;Ahmad, Abdul Manan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1033-1036
    • /
    • 2004
  • The study on speech recognition and understanding has been done for many years. In this paper, we propose a new type of recurrent neural network architecture for speech recognition, in which each output unit is connected to itself and is also fully connected to other output units and all hidden units [1]. Besides that, we also proposed the new architecture and the learning algorithm of recurrent neural network such as Backpropagation Through Time (BPTT, which well-suited. The aim of the study was to observe the difference of Arabic's alphabet like "alif" until "ya". The purpose of this research is to upgrade the people's knowledge and understanding on Arabic's alphabet or word by using Recurrent Neural Network (RNN) and Backpropagation Through Time (BPTT) learning algorithm. 4 speakers (a mixture of male and female) are trained in quiet environment. Neural network is well-known as a technique that has the ability to classified nonlinear problem. Today, lots of researches have been done in applying Neural Network towards the solution of speech recognition [2] such as Arabic. The Arabic language offers a number of challenges for speech recognition [3]. Even through positive results have been obtained from the continuous study, research on minimizing the error rate is still gaining lots attention. This research utilizes Recurrent Neural Network, one of Neural Network technique to observe the difference of alphabet "alif" until "ya".

  • PDF