• Title/Summary/Keyword: river section

Search Result 439, Processing Time 0.026 seconds

A Research on the Probabilistic Calculation Method of River Topographic Factors (하천 지형인자의 확률론적 산정 방식 연구)

  • Choo, Yeon-Moon;Ma, Yun-Han;Park, Sang-Ho;Sue, Jong-Chal;Kim, Yoon-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.509-516
    • /
    • 2020
  • Since the 1960s, many rivers have been polluted and destroyed due to river repair projects for economic development and the covering of small rivers due to urbanization. Many studies have analyzed rivers using measured river topographic factors, but surveying is not easy when the flow rate changes rapidly, such as during a flood. In addition, the previous research has been mainly about the cross section of a river, so information on the longitudinal profile is insufficient. This research used informational entropy theory to obtain an equation that can calculate the average river slope, river slope, and river longitudinal elevation for a river basin in real time. The applicability was analyzed through comparison with measured data of a river's characteristic factors obtained from a river plan. The parameters were calculated using informational entropy theory, nonlinear regression analysis, and actual data. The longitudinal elevation entropy equation for each stream was then calculated, and so was the average river slope. All of the values were over 0.96, so it seems that reliable results can be obtained when calculating river characteristic factors.

Improvement of Detailed Indicators and Application of Methodology for Post-Evaluation of National River Project (국가하천사업 사후 평가를 위한 세부지표 개선 및 방법론 적용)

  • Jang, Chorok;Jang, Moon Yup;Song, Juil;Kim, Han Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.188-196
    • /
    • 2021
  • Korea has invested heavily in projects related to national rivers, but there is no evaluation technique and system to manage river projects that can evaluate the effectiveness of the river projects after they are completed. Their absence leads to the inability of information on river construction sections, analysis of project effects, and benchmarking between projects. This may cause over-budget, overlapping investment problems due to the implementation of similar projects in the same section, and incorrect business elements may be repeatedly utilized. In order to solve this shortcoming, this study developed river project evaluation techniques and a river project (construction) management system. The development of evaluation techniques enables comparison and analysis between projects and can be utilized in establishing maintenance plans. The system can also provide inquiry of construction information, visualization of construction, and management of performance items. In this study, the evaluation techniques developed through prior research were modified and supplemented, and the effectiveness was verified by applying them to national river projects in A river and B river. It is expected that the evaluation techniques and system utilization measures presented will increase the work efficiency of river projects and enhance the efficiency of river projects.

Analysis for Difference of Water Surface Elevation at Cross Section in Pyungchang River Contained Junction Using Hydraulic Model (수리모형을 이용한 평창강 합류구간의 횡단면 수위차 분석)

  • Kim, Gee-Hyoung;Choi, Gye-Woon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.4 s.23
    • /
    • pp.57-65
    • /
    • 2006
  • In this study, hydraulic model same as natural channel with junction area and curved reach is constructed, and after that the variation of difference of the water surface elevation at cross section in junction area is analyzed using constructed hydraulic model. In junction area, the variation of maximum water level based on downstream section is more affected in discharge ratio at upstream than downstream. The maximum water level increased as closed to junction and the peak level appeared at just downstream of junction. The slope of water elevation at cross section is affected in section shape and decreased as discharge ratio is reduce. The expressed formulas developed in the channel consist of constant curvature and section shape showed difference of 60% with measured value, but the suggested formula in this study to compute difference of water surface elevation showed difference of 10% with measured value.

A Survey on the Present Condition of Winter Birds in the estuary of Nakdong River (낙동강하구(洛東江河口)의 겨울새 현황조사(現況調査))

  • Ryu, Hwan Jeang;Kim, Jai Saing
    • Journal of Korean Society of Forest Science
    • /
    • v.63 no.1
    • /
    • pp.1-8
    • /
    • 1984
  • These surveys were conducted to estimate the winter bird population inhabiting in the estuary of Nakdong River by unit distances, by unit times, by sections and by observation points. The results were summarized as follows: 1) A total of 70,032 birds were observed, which composed of 82 species under 27 families. 2) An average of 2,103.06 individuals per kilometer was observed and 23,344.00 individuals per hour. Anatidae showed the most dominance (65.13% of the total), followed by Scolopacidae(14.55%), and Laridae(7.28%). 3) The present population by areas were observed as follows; 61.8% of the total in the tideland and swamp, 31.9% in the surface of water, and 6.4% in the air and land, respectively. 4) Among the five sections, the greatest population was observed in section 3 which figured 22,852 individuals (30.0%), and the least in section 4 (9.8%). 5) In this observation point, six species such as Anas platyrhynchos, Tadorna tadorna, Anser albifrons, Aythya ferina, Calidris alpina and Larus crassirostris were the most dominant birds inhabiting which reached 83.1% of the total.

  • PDF

Investigation of Coastal Erosion Status in Geojin Port Area (거진항 일대의 해안 침식 현황 조사 연구)

  • Kim, In-Ho;Song, Dong-Seob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.67-73
    • /
    • 2012
  • Coastal erosion and its impact on human activities as well as the economic damage and environmental conservation of coastal area is one of major concern in the national policies. In this study, we conducted physical investigations to evaluate effects of erosion in the Geojin beach, which is located nearby the Geojin Port, for a detecting of shoreline change and beach cross-sectional area. The results showed that significant coastal erosion of the Geojin beach has occurred by the complex resources of natural factor, such as rising sea level, storm surges, high wave, and man-made construction. Especially, due to the sand supplement from Jasan river, the section which is nearby the estuary of Jasan river is maintained as a stable beach, whereas beach erosion of the other site in GW04 section has been increased indeed. Therefore, we suggest that it is need to continuous monitoring using DGPS and various surveying techniques to prevent beach erosion onto the GW04 section.

A Study on Flow Characteristics according to Meandering Low Flow Channel Shape in the Compound Cross Section Typed Straight Channel (복단면인 직선수로 내 사행 저수로의 형태에 따른 흐름특성 연구)

  • Kim, Seonghwan;Choi, Gyewoon
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.484-490
    • /
    • 2017
  • In order to examine flow characteristics according to the shape of the meandering low flow channel in the compound cross section typed straight channel, we assumed the representative channel type in Korea and confirmed the validity of the 3D numerical simulation by carrying out the hydraulic model. Based on this study, numerical simulations were also conducted on other types of river channel. As a result of the numerical model test (using the velocity value measured by the water depth observation from the hydraulic model test), it was confirmed that the numerical simulation results are in good agreement with the numerical simulation results. As a result of analyzing the flow field according to the changes in the shape of the low flow channel, it was confirmed that the secondary flow examined in the previous studies occurred. Also, it was confirmed that the maximum flow velocity point moves according to the expansion cross sectional area of flow in high flow plain. Ultimately, it is thought that it is necessary to understand the position of the water impingement (which is an important factor in river design) and the extent of the impact because the change of the channel width affects the flow.

Flood Stage Evaluation for Vegetated Models in River Scales (하천규모에 따른 식생모델의 홍수위 검토)

  • Lee, Jong-Seok;Kim, Byeong-Chan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5B
    • /
    • pp.509-518
    • /
    • 2010
  • This study aims to evaluate for flood stage on vegetated patterns by clearance space rate (CSR) using the numerical models divided into large, medium and small river in river scales with watershed area or design flood discharge. Using the HEC-RAS (1D) and RMA-2 (2D) numerical models, evaluated results of the design flood stages before vegetated modeling of these rivers which CSR in the 1D are obtained over 100% at all points in large river and medium river of except upper part 2 sections, but small river is showed about average 46.0%. It is judge that evaluated results in the 2D are obtained average 101.5% in large river, 96.7% in medium river, 71.1% in small, respectively and because of 1D mainly used to formulate of the river's master plan. However, after vegetated modeling, CSR in case of 1D showed with 91.8% in large river, 74.2% and 38.3% in medium and small rivers, respectively and 2D showed with 95.5% in large river, 86.72 and 37.0% in medium and small rivers, respectively. It is estimate that evaluated results using the 2 numerical models by the vegetated modeling are less affected the CSR for large river in a large area more than the cross section area in medium and small rivers.

Study on the Flow Characteristics at Natural Curved Channel by 2D and 3D Models (2·3차원 모형을 이용한 자연하도 만곡부에서의 흐름특성 연구)

  • Ahn, Seung-Seop;Jung, Do-Joon;Lee, Sang-Il;Kim, Wi-Seok
    • Journal of Environmental Science International
    • /
    • v.21 no.4
    • /
    • pp.471-478
    • /
    • 2012
  • In this study, the flow characteristic analysis at the curved-channel of the actual channel section is compared and reviewed using the 2D RMA-2 model and the 3D FLOW-3D model. the curve section with curve rate 1.044 in the research section is analyzed applying the frequency of he project flood of 100 years. According to the result, the issue for the application of the FLOW-3D Model's three-dimensional numeric analysis result to the actual river is found to be reviewed with caution. Also, application of the 3D model to the wide basin's flood characteristic is determined to be somewhat risky. But, the applicability to the hydraulic property analysis of a partial channel section and the impact analysis and forecast of hydraulic structure is presumed to be high. In addition, if the parameters to reflect the vegetation of basin and the actual channel, more accurate topological measurement data and the topological data with high closeness to the current status are provided, the result with higher reliability is considered to be drawn.

One-dimensional Hydraulic Modeling of Open Channel Flow Using the Riemann Approximate Solver - Application for Natural River (Riemann 해법을 이용한 1차원 개수로 수리해석 - 자연하도 적용)

  • Kim, Ji-Sung;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.4
    • /
    • pp.271-279
    • /
    • 2009
  • The objective of this study is to develop the scheme to apply one-dimensional finite volume method (FVM) to natural river with complex geometry. In the previous study, FVM using the Riemann approximate solver was performed successfully in the various cases of dam-break, flood propagation, etc. with simple and rectangular cross-sections. We introduced the transform the natural into equivalent rectangular cross-sections. As a result of this way, the momentum equation was modified. The accuracy and applicability of newly developed scheme are demonstrated by means of a test example with exact solution, which uses triangular cross-sections. Secondly, this model is applied to natural river with irregular cross-sections and non-uniform lengths between cross-sections. The results shows that the aspect of flood propagation, location and height of hydraulic jump, and numerical solutions of maximum water level are in good agreement with the measured data. Using the developed scheme in this study, existing numerical schemes conducted in simple cross-sections can be directly applied to natural river without complicated numerical treatment.

Simulation of the Route of 4-Nitrophenol in the Geumho River and Analysis of the Impact of Potential Contamination Sources using a Numerical Model (수치모형을 이용한 금호강 수계 내 4-Nitrophenol의 거동 모의 및 잠재 오염원의 영향 분석)

  • Park, Kyeong-Deok;Shin, Dong-Seok;Yang, Duk-Seok;Lee, Injung;Lim, Young-Kyong;Kim, Il-Kyu
    • Journal of Environmental Science International
    • /
    • v.26 no.2
    • /
    • pp.211-220
    • /
    • 2017
  • For areas with the diverse contamination sources, the change of 4-nitrophenol contamination and impact of potential contamination sources have been evaluated using monitoring data and a numerical model (HydroGeoSphere). The model considered several parameters including land cover, precipitation, and flow rate. And, the model has been performed to investigate the effect of decay rate of 4-nitrophenol. The results of the simulations showed that the influence on 4-nitrophenol in downstream was mainly greater than that in upstream, and the tributaries did not significantly affect the mainstream because of their low flow rates. In addition, the effect of contamination sources was simulated for each section, then the measured data were higher than the corresponding simulated data in most sections of the Geumho river. In particular, the impact of the potential contamination sources in the upstream area was much higher than that in the other area, thus more monitoring data for the upstream area is required.