• Title/Summary/Keyword: ring derivation

Search Result 134, Processing Time 0.022 seconds

THE PROPERTIES OF JORDAN DERIVATIONS OF SEMIPRIME RINGS AND BANACH ALGEBRAS, I

  • Kim, Byung Do
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.103-125
    • /
    • 2018
  • Let R be a 5!-torsion free semiprime ring, and let $D:R{\rightarrow}R$ be a Jordan derivation on a semiprime ring R. Then $[D(x),x]D(x)^2=0$ if and only if $D(x)^2[D(x), x]=0$ for every $x{\in}R$. In particular, let A be a Banach algebra with rad(A) and if D is a continuous linear Jordan derivation on A, then we show that $[D(x),x]D(x)2{\in}rad(A)$ if and only if $D(x)^2[D(x),x]{\in}rad(A)$ for all $x{\in}A$ where rad(A) is the Jacobson radical of A.

LOCAL DERIVATIONS OF THE POLYNOMIAL RING OVER A FIELD

  • Yon, Yong-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.247-257
    • /
    • 1999
  • In this article, we give an example of local derivation, that is not derivation, on the algebra F(x1,…, xn) of rational functions in x1, …, xn over an infinite field F, and show that if X is a set of symbols and {x1,…, xn} is a finite subset of X, n$\geq$1, then each local derivation of F[x1,…, xn] into F[X] is a F-derivation and each local derivation of F[X] into itself is also a F-derivation.

  • PDF

JORDAN DERIVATIONS ON A LIE IDEAL OF A SEMIPRIME RING AND THEIR APPLICATIONS IN BANACH ALGEBRAS

  • Kim, Byung-Do
    • The Pure and Applied Mathematics
    • /
    • v.23 no.4
    • /
    • pp.347-375
    • /
    • 2016
  • Let R be a 3!-torsion free noncommutative semiprime ring, U a Lie ideal of R, and let $D:R{\rightarrow}R$ be a Jordan derivation. If [D(x), x]D(x) = 0 for all $x{\in}U$, then D(x)[D(x), x]y - yD(x)[D(x), x] = 0 for all $x,y{\in}U$. And also, if D(x)[D(x), x] = 0 for all $x{\in}U$, then [D(x), x]D(x)y - y[D(x), x]D(x) = 0 for all $x,y{\in}U$. And we shall give their applications in Banach algebras.

ON GENERALIZED (α, β)-DERIVATIONS AND COMMUTATIVITY IN PRIME RINGS

  • Jung, Yong-Soo;Park, Kyoo-Hong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.1
    • /
    • pp.101-106
    • /
    • 2006
  • Let R be a prime ring and I a nonzero ideal of R. Let $\alpha,\;\nu,\;\tau\;R{\rightarrow}R$ be the endomorphisms and $\beta,\;\mu\;R{\rightarrow}R$ the automorphisms. If R admits a generalized $(\alpha,\;\beta)-derivation$ g associated with a nonzero $(\alpha,\;\beta)-derivation\;\delta$ such that $g([\mu(x),y])\;=\;[\nu/(x),y]\alpha,\;\tau$ for all x, y ${\in}I$, then R is commutative.

Tetrahedral Frameworks of Silicate ; Derivation of Structures (규산염 강목구조;구조의 유도)

  • 정수진
    • Journal of the Korean Ceramic Society
    • /
    • v.14 no.4
    • /
    • pp.242-247
    • /
    • 1977
  • By means of coloring of plane nets a number of different tetrahedral frameworks can be derived. With the aid of this method all tetrahedral framework structures which built up of layer structures with 2, 4, 8 tetrahedra per unit cell and 6-membered ring or 4-8-membered ring are given. For the systematic derivation of all possible structures, graph theory may be introduced.

  • PDF

GENERALIZED DERIVATIONS WITH CENTRALIZING CONDITIONS IN PRIME RINGS

  • Das, Priyadwip;Dhara, Basudeb;Kar, Sukhendu
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.83-93
    • /
    • 2019
  • Let R be a noncommutative prime ring of characteristic different from 2, U the Utumi quotient ring of R, C the extended centroid of R and f($x_1,{\ldots},x_n$) a noncentral multilinear polynomial over C in n noncommuting variables. Denote by f(R) the set of all the evaluations of f($x_1,{\ldots},x_n$) on R. If d is a nonzero derivation of R and G a nonzero generalized derivation of R such that $$d(G(u)u){\in}Z(R)$$ for all $u{\in}f(R)$, then $f(x_1,{\ldots},x_n)^2$ is central-valued on R and there exists $b{\in}U$ such that G(x) = bx for all $x{\in}R$ with $d(b){\in}C$. As an application of this result, we investigate the commutator $[F(u)u,G(v)v]{\in}Z(R)$ for all $u,v{\in}f(R)$, where F and G are two nonzero generalized derivations of R.