# Permuting Tri-Derivations in Prime and Semi-Prime Gamma Rings 

Duran Özden and Mehmet Ali Öztürk<br>Department of Mathematics, Faculty of Art and Sciences, Cumhuriyet University, 58140 Sivas, Turkey<br>e-mail: duranozden@e-kolay.net and maozturk@cumhuriyet.edu.tr<br>Young Bae Jun<br>Department of Mathematics Education (and RINS), Gyeongsang National University, Chinju 660-701, Korea<br>e-mail: ybjun@gnu.ac.kr

Abstract. We study permuting tri-derivations in $\Gamma$-rings and give an example.

## 1. Introduction

The notion of a $\Gamma$-ring, a concept more general than a ring, was defined by Nobusawa [3]. Barnes [1] weakened slightly the conditions in the definition of $\Gamma$ ring in the sense of Nobusawa. Barnes [1], Kyuno [2] and Öztürk et al. ([4]-[9]) studied the structure of $\Gamma$-rings and obtained various generalizations analogous to corresponding parts in ring theory. In [7], Öztürk proved some results related with permuting tri-derivation on prime and semi-prime rings. As a continuation of [7], we study permuting tri-derivations on $\Gamma$-rings and give an example.

## 2. Preliminaries

We first recall some basic concepts for the sake of completeness. Let $M$ and $\Gamma$ be additive abelian groups. $M$ is called a $\Gamma$-ring if the following conditions are satisfied: for any $a, b, c \in M$ and $\alpha, \beta \in \Gamma$,

- $a \alpha b \in M$
- $(a+b) \alpha c=a \alpha c+b \alpha c, a(\alpha+\beta) b=a \alpha b+a \beta b, a \alpha(b+c)=a \alpha b+a \alpha c$
- $(a \alpha b) \beta c=a \alpha(b \beta c)$.

Every ring is a $\Gamma$-ring and many notions on the ring theory are generalized to $\Gamma$ rings. Let $M$ be a $\Gamma$-ring. A $\Gamma$-subring of $M$ is an additive subgroup $N$ such that

Received February 19, 2004.
2000 Mathematics Subject Classification: 16W25.
Key words and phrases: prime $\Gamma$-ring, semi-prime $\Gamma$-ring, symmetric bi-derivation, permuting tri-derivation.
$N \Gamma N \subset N$. A right (resp. left) ideal of $M$ is an additive abelian group $I$ such that $I \Gamma M \subset I$ (resp. $M \Gamma I \subset I$ ). If $I$ is both a right and left ideal, then we say that $I$ is an ideal. $M$ is called a prime $\Gamma$-ring if $a \Gamma M \Gamma b=0$ imply $a=0$ or $b=0(a, b \in M)$. Semi-prime $\Gamma$-ring is defined similarly. A map $D(\cdot, \cdot): M \times M \rightarrow M$ is said to be symmetric bi-additive if it is additive both argument and $D(x, y)=D(y, x)$ for all $x, y \in M$. Then the map $d: M \rightarrow M$ defined by $d(x)=D(x, x)$ is called the trace of D . A symmetric bi-additive map is called a symmetric bi-derivation if $D(x \alpha y, z)=D(x, z) \alpha y+x \alpha D(y, z)$ for all $x, y \in M$ and $\alpha \in \Gamma$.

Definition 2.1. Let M be a $\Gamma$-ring. For a subset $I$ of $M$,

$$
A n n_{l} I=\{a \in M \mid a \Gamma I=0\}
$$

is called the left annihilator of $I$. A right annihilator $A n n_{r} I$ can be defined similarly.
We shall need the following well-known and frequently used lemmas:
Lemma 2.2 [10, Lemma 3.4.5]. Let $M$ be a semi-prime $\Gamma$-ring and $I$ a non-zero ideal of $M$. Then $A n n_{r} I=A n n_{l} I$.

Let $M$ be a semi-prime $\Gamma$-ring and $I$ a non-zero ideal of $M$. Then we will denote $A n n I=A n n_{r} I=A n n_{l} I$.

Lemma 2.3 [10, Lemma 3.4.6]. Let $M$ be a semi-prime $\Gamma$-ring and $I$ a non-zero ideal of $M$. Then
(i) AnnI is an ideal of $M$.
(ii) $I \cap A n n I=0$.

Lemma 2.4 [8, Lemma 3]. Let $M$ be a 2-torsion free semi-prime $\Gamma$-ring, $I$ a non-zero ideal of $M$ and $a, b \in M$. Then the following are equivalent:
(i) $a \alpha x \beta b=0$ for all $x \in I$ and $\alpha, \beta \in \Gamma$
(ii) $b \alpha x \beta a=0$ for all $x \in I$ and $\alpha, \beta \in \Gamma$
(iii) $a \alpha x \beta b+b \alpha x \beta a=0$ for all $x \in I$ and $\alpha, \beta \in \Gamma$.

If one of the conditions is fulfilled and $A n n_{l} I=0$ then $a \alpha b=0=b \alpha a$ for all $\alpha \in \Gamma$. Moreover if $M$ is a prime $\Gamma$-ring then $a=0$ or $b=0$.
Lemma 2.5 [11, Lemma 3(ii)]. Let $M$ be a prime $\Gamma$-ring, $I$ a non-zero ideal of $M$, and $a \in R$. If $a \Gamma d(I)=0(d(I) \Gamma a=0)$, then $a=0$ or $d=0$, where $d$ is $a$ derivation of $M$.

## 3. The results

Let $M$ be a $\Gamma$-ring. A mapping $D(\cdot, \cdot, \cdot): M \times M \times M \rightarrow M$ is said to be tri-additive if it satisfies:

- $D(x+w, y, z)=D(x, y, z)+D(w, y, z)$,
- $D(x, y+w, z)=D(x, y, z)+D(x, w, z)$,
- $D(x, y, z+w)=D(x, y, z)+D(x, y, w)$
for all $x, y, z, w \in M$. A tri-additive mapping $D(\cdot, \cdot, \cdot)$ is said to be permuting triadditive if $D(x, y, z)=D(x, z, y)=D(y, x, z)=D(y, z, x)=D(z, x, y)=D(z, y, x)$ for all $x, y, z \in M$. A mapping $d: M \rightarrow M$ defined by $d(x)=D(x, x, x)$ is called the trace of $D(\cdot, \cdot, \cdot)$, where $D(\cdot, \cdot, \cdot)$ is a permuting tri-additive mapping. It is obvious that if $D(\cdot, \cdot, \cdot)$ is a permuting tri-additive mapping, then the trace of $D(\cdot, \cdot, \cdot)$ satisfies the relation

$$
\begin{equation*}
d(x+y)=d(x)+d(y)+3 D(x, x, y)+3 D(x, y, y) \tag{1}
\end{equation*}
$$

for all $x, y \in M$. A permuting tri-additive mapping $D(\cdot, \cdot, \cdot)$ is called a permuting tri-derivation if $D(x \alpha w, y, z)=D(x, y, z) \alpha w+x \alpha D(w, y, z)$ for all $x, y, z, w \in M$ and $\alpha \in \Gamma$. Then the relations

$$
D(x, y \alpha w, z)=D(x, y, z) \alpha w+y \alpha D(w, y, z)
$$

and

$$
D(x, y, z \alpha w)=D(x, y, z) \alpha w+z \alpha D(w, y, z)
$$

are fulfilled for all $x, y, z, w \in M$ and $\alpha \in \Gamma$. Let $D(\cdot, \cdot, \cdot)$ be a permuting tri-additive mapping of $M$ where $M$ is a $\Gamma$-ring. Since

$$
D(0, x, y)=D(0+0, x, y)=D(0, x, y)+D(0, x, y),
$$

we have $D(0, x, y)=0$ for all $x, y \in M$. Thus

$$
0=D(0, y, z)=D(-x+x, y, z)=D(-x, y, z)+D(x, y, z),
$$

and so $D(-x, y, z)=-D(x, y, z)$ for all $x, y, z \in M$. Therefore the mapping $d$ : $M \rightarrow M$ defined by $d(x)=D(x, x, x)$ is an odd function.

Example 3.1. For a commutative ring $R$, let

$$
M=\left\{\left.\left(\begin{array}{ccc}
a & b & c \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, c \in R\right\} \text { and } \Gamma=\left\{\left.\left(\begin{array}{lll}
0 & 0 & \alpha \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \right\rvert\, \alpha \in R\right\} .
$$

It is obvious that $M$ and $\Gamma$ are both abelian groups under matrix addition. Now it is easy to show that $M$ is a $\Gamma$-ring under matrix multiplication. A map $D(\cdot, \cdot, \cdot)$ : $M \times M \times M \rightarrow M$ defined by

$$
\begin{aligned}
\left(\left(\begin{array}{ccc}
a_{1} & b_{1} & c_{1} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right. & \left.,\left(\begin{array}{ccc}
a_{2} & b_{2} & c_{2} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
a_{3} & b_{3} & c_{3} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right) \mapsto \\
& \left(\begin{array}{ccc}
0 & 0 & a_{1} \alpha a_{2} \beta a_{3} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

is a permuting tri-derivation.
Lemma 3.2. Let $M$ be a semi-prime $\Gamma$-ring of characteristic not 2, and 3, 5torsion free, I a non-zero ideal of $M$. Let $D_{1}(\cdot, \cdot, \cdot)$ and $D_{2}(\cdot, \cdot, \cdot)$ be permuting tri-derivations of $M$ with the traces $d_{1}$ and $d_{2}$ respectively. Then
(i) If $d_{1}(I) \Gamma I \Gamma d_{2}(I)=0$ then $d_{1}(M) \Gamma I \Gamma d_{2}(M)=0$.
(ii) If $A n n_{l} I=0$ and $d_{1}(M) \Gamma I \Gamma d_{2}(M)=0$ then $d_{1}(M) \Gamma M \Gamma d_{2}(M)=0$.

Proof. (i). Suppose for all $x, y, z \in I$ and $\alpha, \beta \in \Gamma$

$$
\begin{equation*}
d_{1}(x) \alpha z \beta d_{2}(x)=0 \tag{2}
\end{equation*}
$$

Linearizing (2) implies that

$$
\begin{align*}
0= & d_{1}(x+y) \alpha z \beta d_{2}(x+y)  \tag{3}\\
= & d_{1}(x) \alpha z \beta d_{2}(x)+d_{1}(x) \alpha z \beta d_{2}(y)+3 d_{1}(x) \alpha z \beta D_{2}(x, x, y) \\
& +3 d_{1}(x) \alpha z \beta D_{2}(x, y, y)+d_{1}(y) \alpha z \beta d_{2}(x)+d_{1}(y) \alpha z \beta d_{2}(y) \\
& +3 d_{1}(y) \alpha z \beta D_{2}(x, x, y)+3 d_{1}(y) \alpha z \beta D_{2}(x, y, y) \\
& +3 D_{1}(x, x, y) \alpha z \beta d_{2}(x)+3 D_{1}(x, x, y) \alpha z \beta d_{2}(y) \\
& +9 D_{1}(x, x, y) \alpha z \beta D_{2}(x, x, y)+9 D_{1}(x, x, y) \alpha z \beta D_{2}(x, y, y) \\
& +3 D_{1}(x, y, y) \alpha z \beta d_{2}(x)+3 D_{1}(x, y, y) \alpha z \beta d_{2}(y) \\
& +9 D_{1}(x, y, y) \alpha z \beta D_{2}(x, x, y)+9 D_{1}(x, y, y) \alpha z \beta D_{2}(x, y, y)
\end{align*}
$$

and by using (2), we have for all $x, y, z \in I$ and $\alpha, \beta \in \Gamma$

$$
\begin{align*}
& d_{1}(x) \alpha z \beta d_{2}(y)+3 d_{1}(x) \alpha z \beta D_{2}(x, x, y)+3 d_{1}(x) \alpha z \beta D_{2}(x, x, y)  \tag{4}\\
& \quad+d_{1}(y) \alpha z \beta d_{2}(x)+3 d_{1}(y) \alpha z \beta D_{2}(x, x, y)+3 d_{1}(y) \alpha z \beta D_{2}(x, y, y) \\
& \quad+3 D_{1}(x, x, y) \alpha z \beta d_{2}(x)+3 D_{1}(x, x, y) \alpha z \beta d_{2}(y) \\
& +9 D_{1}(x, x, y) \alpha z \beta D_{2}(x, x, y)+9 D_{1}(x, x, y) \alpha z \beta D_{2}(x, y, y) \\
& +3 D_{1}(x, y, y) \alpha z \beta d_{2}(x)+3 D_{1}(x, y, y) \alpha z \beta d_{2}(y) \\
& +9 D_{1}(x, y, y) \alpha z \beta D_{2}(x, x, y)+9 D_{1}(x, y, y) \alpha z \beta D_{2}(x, y, y) \\
& =0
\end{align*}
$$

Replacing $x$ by $-x$ in (4) induces that

$$
\begin{align*}
& -d_{1}(x) \alpha z \beta d_{2}(y)-3 d_{1}(x) \alpha z \beta D_{2}(x, x, y)+3 d_{1}(x) \alpha z \beta D_{2}(x, y, y)  \tag{5}\\
& \quad-d_{1}(y) \alpha z \beta d_{2}(x)+3 d_{1}(y) \alpha z \beta D_{2}(x, x, y)-3 d_{1}(y) \alpha z \beta D_{2}(x, y, y) \\
& \quad-3 D_{1}(x, x, y) \alpha z \beta d_{2}(x)+3 D_{1}(x, x, y) \alpha z \beta d_{2}(y) \\
& \quad+9 D_{1}(x, x, y) \alpha z \beta D_{2}(x, x, y)-9 D_{1}(x, x, y) \alpha z \beta D_{2}(x, y, y) \\
& \quad+3 D_{1}(x, y, y) \alpha z \beta d_{2}(x)-3 D_{1}(x, y, y) \alpha z \beta d_{2}(y) \\
& \quad-9 D_{1}(x, y, y) \alpha z \beta D_{2}(x, x, y)+9 D_{1}(x, y, y) \alpha z \beta D_{2}(x, y, y) \\
& =0
\end{align*}
$$

for all $x, y, z \in I$ and $\alpha, \beta \in \Gamma$. Since Char $M \neq 2$ and $M$ is 3 -torsion free, it follows from (4) and (5) that

$$
\begin{align*}
& d_{1}(x) \alpha z \beta D_{2}(x, y, y)+d_{1}(y) \alpha z \beta D_{2}(x, x, y)+D_{1}(x, x, y) \alpha z \beta d_{2}(y)  \tag{6}\\
& \quad+3 D_{1}(x, x, y) \alpha z \beta D_{2}(x, x, y)+D_{1}(x, y, y) \alpha z \beta d_{2}(x) \\
& \quad+3 D_{1}(x, y, y) \alpha z \beta D_{2}(x, y, y)=0
\end{align*}
$$

for all $x, y, z \in I$ and $\alpha, \beta \in \Gamma$. Writing $2 y$ for $y$ in (6) and using the fact that Char $M \neq 2$, we get

$$
\begin{align*}
& d_{1}(y) \alpha z \beta D_{2}(x, x, y)+D_{1}(x, x, y) \alpha z \beta d_{2}(y)  \tag{7}\\
& \quad+3 D_{1}(x, y, y) \alpha z \beta D_{2}(x, y, y)=0
\end{align*}
$$

for all $x, y, z \in I$ and $\alpha, \beta \in \Gamma$. Writing $x+y$ for $x$ in (7) and using (2) and the fact that $M$ is 5 -torsion free, we have

$$
\begin{equation*}
d_{1}(y) \alpha z \beta D_{2}(x, y, y)+D_{1}(x, y, y) \alpha z \beta d_{2}(y)=0 \tag{8}
\end{equation*}
$$

for all $x, y, z \in I$ and $\alpha, \beta \in \Gamma$. Replacing $z$ by $z \beta d_{2}(y) \alpha^{\prime} m \beta^{\prime} D_{1}(x, y, y) \alpha z$ in (8), we get

$$
\begin{align*}
& D_{1}(x, y, y) \alpha z \beta d_{2}(y) \alpha^{\prime} m \beta^{\prime} D_{1}(x, y, y) \alpha z \beta d_{2}(y)  \tag{9}\\
& =-d_{1}(y) \alpha z \beta d_{2}(y) \alpha^{\prime} m \beta^{\prime} D_{1}(x, y, y) \alpha z \beta D_{2}(x, y, y)
\end{align*}
$$

for all $x, y, z \in I, m \in M$ and $\alpha, \beta, \alpha^{\prime}, \beta^{\prime} \in \Gamma$ and from (2), we get

$$
D_{1}(x, y, y) \alpha z \beta d_{2}(y) \alpha^{\prime} m \beta^{\prime} D_{1}(x, y, y) \alpha z \beta d_{2}(y)=0
$$

for all $x, y, z \in I, m \in M$ and $\alpha, \beta, \alpha^{\prime}, \beta^{\prime} \in \Gamma$. Since $M$ is a semi-prime $\Gamma$-ring, we get

$$
\begin{equation*}
D_{1}(x, y, y) \alpha z \beta d_{2}(y)=0 \tag{10}
\end{equation*}
$$

for all $x, y, z \in I$ and $\alpha, \beta \in \Gamma$. Now writing $m \gamma z$ by $z$ in (10), where $m \in M, \gamma \in \Gamma$, we get

$$
\begin{equation*}
D_{1}(x, y, y) \alpha m \gamma z \beta d_{2}(y)=0 \tag{11}
\end{equation*}
$$

for all $x, y, z \in I, m \in M$ and $\alpha, \beta, \gamma \in \Gamma$. Next replacing $x$ by $x \gamma m$ in (10) and using (11), we have

$$
\begin{equation*}
x \gamma D_{1}(m, y, y) \alpha z \beta d_{2}(y)=0 \tag{12}
\end{equation*}
$$

for all $x, y, z \in I, m \in M$ and $\alpha, \beta, \gamma \in \Gamma$, which implies that

$$
D_{1}(m, y, y) \alpha z \beta d_{2}(y) \in A n n_{r} I \text { and also } D_{1}(m, y, y) \alpha z \beta d_{2}(y) \in I
$$

and so $D_{1}(m, y, y) \alpha z \beta d_{2}(y) \in(A n n I) \cap I=0$ by Lemmas 2.2 and 2.3. Thus, for all $y, z \in I, m \in M$ and $\alpha, \beta \in \Gamma$

$$
\begin{equation*}
D_{1}(m, y, y) \alpha z \beta d_{2}(y)=0 \tag{13}
\end{equation*}
$$

Now replacing $y$ by $x+y$ in (13), we get

$$
\begin{align*}
& D_{1}(m, x, x) \alpha z \beta d_{2}(y)+3 D_{1}(m, x, x) \alpha z \beta D_{2}(x, x, y)  \tag{14}\\
& \quad+3 D_{1}(m, x, x) \alpha z \beta D_{2}(x, y, y)+D_{1}(m, y, y) \alpha z \beta d_{2}(x) \\
& +3 D_{1}(m, y, y) \alpha z \beta D_{2}(x, x, y)+3 D_{1}(m, y, y) \alpha z \beta D_{2}(x, y, y) \\
& +2 D_{1}(m, x, y) \alpha z \beta d_{2}(x)+2 D_{1}(m, x, y) \alpha z \beta d_{2}(y) \\
& +6 D_{1}(m, x, y) \alpha z \beta D_{2}(x, x, y)+6 D_{1}(m, x, y) \alpha z \beta D_{2}(x, y, y) \\
& =0
\end{align*}
$$

for all $x, y, z \in I, m \in M$ and $\alpha, \beta \in \Gamma$. Writing $-x$ for $x$ in (14) and using the fact that Char $M \neq 2$, we get

$$
\begin{align*}
& D_{1}(m, x, x) \alpha z \beta d_{2}(y)+3 D_{1}(m, x, x) \alpha z \beta D_{2}(x, x, y)  \tag{15}\\
& \quad+3 D_{1}(m, y, y) \alpha z \beta D_{2}(x, x, y)+2 D_{1}(m, x, y) \alpha z \beta d_{2}(x) \\
& +6 D_{1}(m, x, y) \alpha z \beta D_{2}(x, y, y)=0
\end{align*}
$$

for all $x, y, z \in I, m \in M$ and $\alpha, \beta \in \Gamma$. Now replacing $y$ by $x+y$ in (15) and using (13) the fact that $M$ is 3 -torsion free, we obtain

$$
\begin{align*}
& 6 D_{1}(m, x, x) \alpha z \beta D_{2}(x, x, y)+3 D_{1}(m, x, x) \alpha z \beta D_{2}(x, y, y)  \tag{16}\\
& \quad+D_{1}(m, y, y) \alpha z \beta d_{2}(x)+4 D_{1}(m, x, y) \alpha z \beta d_{2}(x) \\
& \quad+6 D_{1}(m, x, y) \alpha z \beta D_{2}(x, x, y)=0
\end{align*}
$$

for all $x, y, z \in I, m \in M$ and $\alpha, \beta \in \Gamma$. Writing $-x$ for $x$ in (16) and using the fact that Char $M \neq 2$, we get

$$
\begin{equation*}
3 D_{1}(m, x, x) \alpha z \beta D_{2}(x, x, y)+2 D_{1}(m, x, y) \alpha z \beta d_{2}(x)=0 \tag{17}
\end{equation*}
$$

for all $x, y, z \in I, m \in M$ and $\alpha, \beta \in \Gamma$. Writing $z \beta d_{2}(x) \alpha^{\prime} m^{\prime} \beta^{\prime} D_{1}(m, x, y) \alpha z$ for $z$ in (17) and using (13), we get

$$
\begin{equation*}
2 D_{1}(m, x, y) \alpha z \beta d_{2}(x) \alpha^{\prime} m^{\prime} \beta^{\prime} D_{1}(m, x, y) \alpha z \beta d_{2}(x)=0 \tag{18}
\end{equation*}
$$

for all $x, y, z \in I, m, m^{\prime} \in M$ and $\alpha, \beta, \alpha^{\prime}, \beta^{\prime} \in \Gamma$. Since Char $M \neq 2$ and $M$ is semi-prime $\Gamma$-ring, (18) implies that

$$
\begin{equation*}
D_{1}(m, x, y) \alpha z \beta d_{2}(x)=0 \tag{19}
\end{equation*}
$$

for all $x, y, z \in I, m \in M$ and $\alpha, \beta \in \Gamma$. Now writing $m \gamma z$ by $z$ in (19), we get

$$
\begin{equation*}
D_{1}(m, x, y) \alpha m \gamma z \beta d_{2}(x)=0 \tag{20}
\end{equation*}
$$

for all $x, y, z \in I, m \in M$ and $\alpha, \beta, \gamma \in \Gamma$. Next replacing $y$ by $y \gamma m$ in (19) and using (20), we have

$$
\begin{equation*}
y \gamma D_{1}(m, m, x) \alpha z \beta d_{2}(x)=0 \tag{21}
\end{equation*}
$$

for all $x, y, z \in I, m \in M$ and $\alpha, \beta, \gamma \in \Gamma$. It follows that

$$
D_{1}(m, m, x) \alpha z \beta d_{2}(x) \in A n n_{r} I \text { and } D_{1}(m, m, x) \alpha z \beta d_{2}(x) \in I .
$$

So we get $D_{1}(m, m, x) \alpha z \beta d_{2}(x) \in(A n n I) \cap I=0$ by Lemmas 2.2 and 2.3. Thus, for all $x, z \in I, m \in M$ and $\alpha, \beta \in \Gamma$

$$
\begin{equation*}
D_{1}(m, m, x) \alpha z \beta d_{2}(x)=0 . \tag{22}
\end{equation*}
$$

Now replacing $x$ by $x+y$ in (22), we get

$$
\begin{align*}
& D_{1}(m, m, x) \alpha z \beta d_{2}(y)+3 D_{1}(m, m, x) \alpha z \beta D_{2}(x, x, y)  \tag{23}\\
& \quad+3 D_{1}(m, m, x) \alpha z \beta D_{2}(x, y, y)+D_{1}(m, m, y) \alpha z \beta d_{2}(x) \\
& \quad+3 D_{1}(m, m, y) \alpha z \beta D_{2}(x, x, y)+3 D_{1}(m, m, y) \alpha z \beta D_{2}(x, y, y) \\
& =0
\end{align*}
$$

for all $x, y, z \in I, m \in M$ and $\alpha, \beta \in \Gamma$. Writing $-x$ for $x$ in (23) and using the fact that $M$ is 3 -torsion free, we get

$$
\begin{equation*}
D_{1}(m, m, x) \alpha z \beta D_{2}(x, y, y)+D_{1}(m, m, y) \alpha z \beta D_{2}(x, x, y)=0 \tag{24}
\end{equation*}
$$

for all $x, y, z \in I, m \in M$ and $\alpha, \beta \in \Gamma$. Writing $x+y$ for $x$ in (24) and using (22), we get

$$
\begin{equation*}
D_{1}(m, m, x) \alpha z \beta d_{2}(y)+3 D_{1}(m, m, y) \alpha z \beta D_{2}(x, y, y)=0 \tag{25}
\end{equation*}
$$

for all $x, y, z \in I, m \in M$ and $\alpha, \beta \in \Gamma$. Writing $z \beta d_{2}(y) \alpha^{\prime} m^{\prime} \beta^{\prime} D_{1}(m, m, x) \alpha z$ for $z$ in (25) and using (22), we get

$$
\begin{equation*}
D_{1}(m, m, x) \alpha z \beta d_{2}(y) \alpha^{\prime} m^{\prime} \beta^{\prime} D_{1}(m, m, x) \alpha z \beta d_{2}(y)=0 \tag{26}
\end{equation*}
$$

for all $x, y, z \in I, m, m^{\prime} \in M$ and $\alpha, \beta, \alpha^{\prime}, \beta^{\prime} \in \Gamma$. Since $M$ is semi-prime $\Gamma$-ring, (26) implies that

$$
\begin{equation*}
D_{1}(m, m, x) \alpha z \beta d_{2}(y)=0 \tag{27}
\end{equation*}
$$

for all $x, y, z \in I, m \in M$ and $\alpha, \beta \in \Gamma$. Now writing $m \gamma z$ by $z$ in (27), we get

$$
\begin{equation*}
D_{1}(m, m, x) \alpha m \gamma z \beta d_{2}(y)=0 \tag{28}
\end{equation*}
$$

for all $x, y, z \in I, m \in M$ and $\alpha, \beta, \gamma \in \Gamma$. Next replacing $x$ by $x \gamma m$ in (27) and using (28), we have

$$
\begin{equation*}
x \gamma d_{1}(m) \alpha z \beta d_{2}(y)=0 \tag{29}
\end{equation*}
$$

for all $x, y, z \in I, m \in M$ and $\alpha, \beta, \gamma \in \Gamma$. It follows that

$$
d_{1}(m) \alpha z \beta d_{2}(y) \in A n n_{r} I \text { and } d_{1}(m) \alpha z \beta d_{2}(y) \in I
$$

so that $d_{1}(m) \alpha z \beta d_{2}(y) \in(A n n I) \cap I=0$ by Lemmas 2.2 and 2.3. Thus, for all $y, z \in I, m \in M$ and $\alpha, \beta \in \Gamma$

$$
\begin{equation*}
d_{1}(m) \alpha z \beta d_{2}(y)=0 \tag{30}
\end{equation*}
$$

Writing $x+y$ for $y$ in (30) and using the fact that $M$ is 3 -torsion free, we get

$$
\begin{equation*}
d_{1}(m) \alpha z \beta D_{2}(x, x, y)+d_{1}(m) \alpha z \beta D_{2}(x, y, y)=0 \tag{31}
\end{equation*}
$$

for all $x, y, z \in I, m \in M$ and $\alpha, \beta \in \Gamma$. Replacing $x$ for $-x$ in (31) and using the fact that Char $M \neq 2$, we get

$$
\begin{equation*}
d_{1}(m) \alpha z \beta D_{2}(x, x, y)=0 \tag{32}
\end{equation*}
$$

for all $x, y, z \in I, m \in M$ and $\alpha, \beta \in \Gamma$. Now writing $z \gamma n$ by $z$ in (32), we get

$$
\begin{equation*}
d_{1}(m) \alpha z \gamma n \beta D_{2}(x, x, y)=0 \tag{33}
\end{equation*}
$$

for all $x, y, z \in I, m, n \in M$ and $\alpha, \beta, \gamma \in \Gamma$. Next replacing $y$ by $n \gamma y$ in (32) and using (33), we have

$$
\begin{equation*}
d_{1}(m) \alpha z \beta D_{2}(n, x, x) \gamma y=0 \tag{34}
\end{equation*}
$$

for all $x, y, z \in I, m, n \in M$ and $\alpha, \beta, \gamma \in \Gamma$. It follows that

$$
d_{1}(m) \alpha z \beta D_{2}(n, x, x) \in A n n_{l} I \text { and } d_{1}(m) \alpha z \beta D_{2}(n, x, x) \in I
$$

so that $d_{1}(m) \alpha z \beta D_{2}(n, x, x) \in(A n n I) \cap I=0$ by Lemmas 2.2 and 2.3. Thus, for all $x, z \in I, m, n \in M$ and $\alpha, \beta \in \Gamma$,

$$
\begin{equation*}
d_{1}(m) \alpha z \beta D_{2}(n, x, x)=0 \tag{35}
\end{equation*}
$$

Writing $x+y$ for $x$ in (35) and using the fact that Char $M \neq 2$, we get

$$
\begin{equation*}
d_{1}(m) \alpha z \beta D_{2}(n, x, y)=0 \tag{36}
\end{equation*}
$$

for all $x, y, z \in I, m, n \in M$ and $\alpha, \beta \in \Gamma$. Now writing $z \gamma n$ by $z$ in (36), we get

$$
\begin{equation*}
d_{1}(m) \alpha z \gamma n \beta D_{2}(n, x, y)=0 \tag{37}
\end{equation*}
$$

for all $x, y, z \in I, m, n \in M$ and $\alpha, \beta, \gamma \in \Gamma$. Next replacing $x$ by $n \gamma x$ in (36) and using (37), we have

$$
\begin{equation*}
d_{1}(m) \alpha z \beta D_{2}(n, n, y) \gamma x=0 \tag{38}
\end{equation*}
$$

for all $x, y, z \in I, m, n \in M$ and $\alpha, \beta, \gamma \in \Gamma$. It follows that

$$
d_{1}(m) \alpha z \beta D_{2}(n, n, y) \in A n n_{l} I \text { and } d_{1}(m) \alpha z \beta D_{2}(n, n, y) \in I
$$

so that $d_{1}(m) \alpha z \beta D_{2}(n, n, y) \in(A n n I) \cap I=0$ by Lemmas 2.2 and 2.3. Thus, for all $y, z \in I, m, n \in M$ and $\alpha, \beta \in \Gamma$

$$
\begin{equation*}
d_{1}(m) \alpha z \beta D_{2}(n, n, y)=0 . \tag{39}
\end{equation*}
$$

Replacing $z$ by $z \gamma n$ in (39), we get

$$
\begin{equation*}
d_{1}(m) \alpha z \gamma n \beta D_{2}(n, n, y)=0 \tag{40}
\end{equation*}
$$

for all $y, z \in I, m, n \in M$ and $\alpha, \beta, \gamma \in \Gamma$. Next replacing $y$ by $n \gamma y$ in (39) and using (40), we get

$$
\begin{equation*}
d_{1}(m) \alpha z \beta d_{2}(n) \gamma y=0 \tag{41}
\end{equation*}
$$

for all $y, z \in I, m, n \in M$ and $\alpha, \beta, \gamma \in \Gamma$. It follows that

$$
d_{1}(m) \alpha z \beta d_{2}(n) \in A n n_{l} I \text { and } d_{1}(m) \alpha z \beta d_{2}(n) \in I
$$

so that $d_{1}(m) \alpha z \beta d_{2}(n) \in(A n n I) \cap I=0$ by Lemmas 2.2 and 2.3. Thus, for all $z \in I, m, n \in M$ and $\alpha, \beta \in \Gamma$

$$
d_{1}(m) \alpha z \beta d_{2}(n)=0
$$

(ii). Suppose that $A n n_{l} I=0$ and for all $z \in I, m, n \in M$ and $\alpha, \beta \in \Gamma$,

$$
\begin{equation*}
d_{1}(m) \alpha z \beta d_{2}(n)=0 . \tag{42}
\end{equation*}
$$

Replacing $z$ by $m^{\prime} \beta d_{2}(n) \gamma z \beta^{\prime} n^{\prime} \gamma^{\prime} d_{1}(m) \alpha m^{\prime}$ in (42), we get

$$
d_{1}(m) \alpha m^{\prime} \beta d_{2}(n) \gamma z \beta^{\prime} n^{\prime} \gamma^{\prime} d_{1}(m) \alpha m^{\prime} \beta d_{2}(n)=0
$$

for all $z \in I, m, n, m^{\prime}, n^{\prime} \in M$ and $\alpha, \beta, \gamma, \beta^{\prime}, \gamma^{\prime} \in \Gamma$. Since $M$ is a semi-prime $\Gamma$-ring, we have

$$
\begin{equation*}
d_{1}(m) \alpha m^{\prime} \beta d_{2}(n) \gamma z=0 \tag{43}
\end{equation*}
$$

for all $z \in I, m, n, m^{\prime} \in M$ and $\alpha, \beta, \gamma \in \Gamma$, and so $d_{1}(m) \alpha m^{\prime} \beta d_{2}(n) \in A n n_{l} I=0$.
Thus we conclude that

$$
d_{1}(m) \alpha m^{\prime} \beta d_{2}(n)=0
$$

for all $m, n, m^{\prime} \in M$ and $\alpha, \beta \in \Gamma$. This completes the proof.
Lemma 3.3. Let $M$ be a 2, 3-torsion free $\Gamma$-ring and $I$ a non-zero one-sided ideal of $M$. Let $D(\cdot, \cdot, \cdot)$ be a permuting tri-derivation with the trace $d$. Consider the following conditions:
(i) $d(x)=0$ for all $x \in I$
(ii) $D(x, y, z)=0$ for all $x, y, z \in I$
(iii) $D(m, x, y)=0$ for all $x, y \in I$ and $m \in M$
(iv) $D(m, n, x)=0$ for all $x \in I$ and $m, n \in M$
(v) $D(m, n, r)=0$ for all $m, n, r \in M$.

Then (i) and (ii) are equivalent. Moreover if $M$ is a prime $\Gamma$-ring or $A n n_{r} I=0$ (or $A n n_{l} I=0$ ), the above conditions are equivalent.
Proof. Let $I$ be a right ideal of $M$ and let $m, n, r \in M, x, y, z \in I$ and $\alpha, \beta, \gamma \in \Gamma$.
Since $M$ is 3-torsion free, it follows from (1) that

$$
\begin{equation*}
D(x, x, y)+D(x, y, y)=0 \tag{44}
\end{equation*}
$$

Writing $y+z$ for $y$ in (44) and using the fact that $M$ is 2-torsion free, we know that (i) and (ii) are equivalent. Replacing $z$ by $z \alpha m$ in (ii) implies that

$$
0=D(x, y, z \alpha m)=D(x, y, z) \alpha m+z \alpha D(m, x, y)=z \alpha D(m, x, y)
$$

If $M$ is a prime $\Gamma$-ring then by Lemma 2.5, the above condition shows that (ii) and (iii) are equivalent. If $A n n_{r} I=0$, then the above condition shows that (ii) and (iii) are equivalent. Replacing $y$ by $y \beta n$ in (iii), we have

$$
0=D(m, x, y \beta n)=D(m, x, y) \beta n+y \beta D(m, n, x)=y \beta D(m, n, x)
$$

If $M$ is a prime $\Gamma$-ring then by Lemma 2.5 , the above condition shows that (iii) and (iv) are equivalent. If $A n n_{r} I=0$, then the above condition shows that (iii) and (iv) are equivalent. Replacing $x$ by $x \gamma r$ in (iv), we have

$$
0=D(m, n, x \gamma r)=D(m, n, x) \gamma n+x \gamma D(m, n, r)=x \gamma D(m, n, r)
$$

If $M$ is a prime $\Gamma$-ring then by Lemma 2.5 , the above condition shows that (iv) and (v) are equivalent. If $A n n_{r} I=0$, then the above condition shows that (iv) and (v) are equivalent. Similarly we can prove the result for a left ideal $I$.

Theorem 3.4. Let $M$ be a 2, 3-torsion free prime $\Gamma$-ring, I a non-zero ideal of $M$. Let $D_{1}(\cdot, \cdot, \cdot)$ and $D_{2}(\cdot, \cdot, \cdot)$ be permuting tri-derivations of $M$ with traces $d_{1}$ and $d_{2}$ respectively. If $D_{1}\left(d_{2}(x), x, x\right)=0$ for all $x \in I$, then $D_{1}=0$ or $D_{2}=0$.
Proof. Assume that $D_{1}\left(d_{2}(x), x, x\right)=0$ for all $x \in I$. For any $x, y \in I$ we have

$$
D_{1}\left(d_{2}(x+y), x+y, x+y\right)+D_{1}\left(d_{2}(-x+y), x+y, x+y\right)=0 .
$$

Since $M$ is 2-torsion free, it follows that

$$
\begin{align*}
& 2 D_{1}\left(d_{2}(x), x, y\right)+D_{1}\left(d_{2}(y), x, x\right)+3 D_{1}\left(D_{2}(x, x, y), x, x\right)  \tag{45}\\
& +3 D_{1}\left(D_{2}(x, x, y), y, y\right)+6 D_{1}\left(D_{2}(x, y, y), x, y\right)=0
\end{align*}
$$

for all $x, y \in I$. Writing $x+y$ for $y$ in (45) and using the fact that $M$ is 3 -torsion free, we get

$$
\begin{align*}
& D_{1}\left(d_{2}(x), y, y\right)+4 D_{1}\left(d_{2}(x), x, y\right)+6 D_{1}\left(D_{2}(x, x, y), x, x\right)  \tag{46}\\
& \quad+6 D_{1}\left(D_{2}(x, x, y), x, y\right)+3 D_{1}\left(D_{2}(x, y, y), x, x\right)=0
\end{align*}
$$

for all $x, y \in I$. Writing $-x$ for $x$ in (46) and using the fact that $M$ is 2-torsion free, we get

$$
\begin{equation*}
4 D_{1}\left(d_{2}(x), x, y\right)+6 D_{1}\left(D_{2}(x, x, y), x, x\right)=0 \tag{47}
\end{equation*}
$$

for all $x, y \in I$. Replacing $y$ for $x \alpha y$ in (47) and using the hypothesis and the fact that $M$ is 2,3 -torsion free, we get

$$
\begin{equation*}
d_{2}(x) \alpha D_{1}(x, x, y)+d_{1}(x) \alpha D_{2}(x, x, y)=0 \tag{48}
\end{equation*}
$$

for all $x, y \in I$ and $\alpha \in \Gamma$. Writing $y \beta z$ for $y$ in (48) implies that

$$
\begin{equation*}
d_{2}(x) \alpha y \beta D_{1}(x, x, z)+d_{1}(x) \alpha y \beta D_{2}(x, x, z)=0 \tag{49}
\end{equation*}
$$

for all $x, y, z \in I$ and $\alpha, \beta \in \Gamma$. Writing $x$ for $z$ in (49) and using Lemma 2.4, we have

$$
\begin{equation*}
d_{1}(x) \alpha y \beta d_{2}(x)=0 \tag{50}
\end{equation*}
$$

for all $x, y \in I$ and $\alpha, \beta \in \Gamma$. In this case, suppose that $d_{1}$ and $d_{2}$ are both different from zero. Then there exist $x_{1}, x_{2} \in I$ such that $d_{1}\left(x_{1}\right) \neq 0$ and $d_{2}\left(x_{2}\right) \neq 0$. In particular, $d_{1}\left(x_{1}\right) \alpha y \beta d_{2}\left(x_{1}\right)=0$ for all $y \in I$ and $\alpha, \beta \in \Gamma$. Since $d_{1}\left(x_{1}\right) \neq 0$ and $M$ is prime $\Gamma$-ring we have $d_{2}\left(x_{1}\right)=0$. Similarly, we get $d_{1}\left(x_{2}\right)=0$. Then the relation (49) reduces to the equation $d_{1}\left(x_{1}\right) \alpha y \beta D_{2}\left(x_{1}, x_{1}, z\right)=0$ for all $y, z \in I$ and $\alpha, \beta \in \Gamma$. Using this relation and Lemma 2.5 we obtain that $D_{2}\left(x_{1}, x_{1}, z\right)=0$ for all $z \in I$ because of $d_{1}\left(x_{1}\right) \neq 0$ (the mapping $z \rightarrow D_{2}\left(x_{1}, x_{1}, z\right)$ is a derivation). Thus, we have $D_{2}\left(x_{1}, x_{1}, z\right)=0$. In the same way, we get $D_{1}\left(x_{1}, x_{1}, z\right)=0$. Substituting $x_{1}+x_{2}$ for $z$, we obtain

$$
\begin{aligned}
d_{1}(z) & =d_{1}\left(x_{1}+x_{2}\right) \\
& =d_{1}\left(x_{1}\right)+d_{1}\left(x_{2}\right)+3 D_{1}\left(x_{1}, x_{1}, x_{2}\right)+3 D_{1}\left(x_{1}, x_{2}, x_{2}\right) \\
& =d_{1}\left(x_{1}\right) \neq 0
\end{aligned}
$$

and

$$
\begin{aligned}
d_{2}(z) & =d_{2}\left(x_{1}+x_{2}\right) \\
& =d_{2}\left(x_{1}\right)+d_{2}\left(x_{2}\right)+3 D_{2}\left(x_{1}, x_{1}, x_{2}\right)+3 D_{2}\left(x_{1}, x_{2}, x_{2}\right) \\
& =d_{2}\left(x_{2}\right) \neq 0 .
\end{aligned}
$$

Therefore we have $d_{1}(z) \neq 0$ and $d_{2}(z) \neq 0$, a contradiction. Hence, we get $d_{1}(x)=0$ for all $x \in I$ or $d_{2}(x)=0$ for all $x \in I$. Thus $D_{1}=0$ or $D_{2}=0$.

Corollary 3.5. Let $M$ be a semi-prime $\Gamma$-ring of characteristic not 2 and 3, 5torsion free, $I$ a non-zero ideal of $M$. Let $D(\cdot, \cdot, \cdot)$ be a permuting tri-derivation of $M$ and $d$ be the trace of $D(\cdot, \cdot, \cdot)$ such that $d(I) \subset I$. If $A n n_{l} I=0$ and $D(d(x), x, x)=0$ for all $x \in I$, then $D=0$.
Proof. Take $D_{1}=D_{2}=D$ in Theorem 3.4. By (50) we get $d(x) \alpha y \beta d(x)=0$ for all $x \in I$ and $\alpha, \beta \in \Gamma$. Since $M$ is a semi-prime $\Gamma$-ring, it follows from Lemma 3.2 that $d(m)=0$ for all $m \in M$ so from Lemma 3.3 that $D=0$.

Theorem 3.6. Let $M$ be a prime $\Gamma$-ring of characteristic not 2 and 3, 5-torsion free, I a non-zero ideal of $M$. Let $D_{1}(\cdot, \cdot, \cdot)$ and $D_{2}(\cdot, \cdot, \cdot)$ be permuting tri-derivations of $M$ and let $d_{1}$ and $d_{2}$ be traces of $D_{1}(\cdot, \cdot, \cdot)$ and $D_{2}(\cdot, \cdot, \cdot)$, respectively, such that $d_{2}(I) \subset I$. If $A n n_{l} I=0$ and $D_{1}\left(d_{2}(x), d_{2}(x), x\right)=0$ for all $x \in I$, then $D_{1}=0$ or $D_{2}=0$.
Proof. For any $x, y \in I$, we have

$$
D_{1}\left(d_{2}(x+y), d_{2}(x+y), x+y\right)+D_{1}\left(d_{2}(-x+y), d_{2}(-x+y),-x+y\right)=0
$$

Since Char $M \neq 2$, it follows that

$$
\begin{align*}
& 2 D_{1}\left(d_{2}(y), d_{2}(x), x\right)+6 D_{1}\left(D_{2}(x, x, y), d_{2}(x), x\right)  \tag{51}\\
& \quad+6 D_{1}\left(D_{2}(x, y, y), d_{2}(y), x\right)+18 D_{1}\left(D_{2}(x, x, y), D_{2}(x, y, y), x\right) \\
& \quad+D_{1}\left(d_{2}(x), d_{2}(x), y\right)+6 D_{1}\left(D_{2}(x, y, y), d_{2}(x), y\right) \\
& +6 D_{1}\left(D_{2}(x, x, y), d_{2}(y), y\right)+9 D_{1}\left(D_{2}(x, y, y), D_{2}(x, y, y), y\right) \\
& +9 D_{1}\left(D_{2}(x, x, y), D_{2}(x, x, y), y\right)=0
\end{align*}
$$

for all $x, y \in I$. Writing $2 x$ for $x$ in (51) and using the fact that $C h a r M \neq 2$ and $M$ is 3 -torsion free, we get

$$
\begin{align*}
& 2 D_{1}\left(d_{2}(y), d_{2}(x), x\right)+30 D_{1}\left(D_{2}(x, x, y), d_{2}(x), x\right)  \tag{52}\\
& \quad+18 D_{1}\left(D_{2}(x, x, y), D_{2}(x, y, y), x\right)+5 D_{1}\left(d_{2}(x), d_{2}(x), y\right) \\
& \quad+6 D_{1}\left(D_{2}(x, y, y), d_{2}(x), y\right)+9 D_{1}\left(D_{2}(x, x, y), D_{2}(x, x, y), y\right)=0
\end{align*}
$$

for all $x, y \in I$. Writing $2 x$ for $x$ in (52) and using the fact that $C h a r M \neq 2$ and $M$ is 3, 5 -torsion free, we get

$$
\begin{equation*}
6 D_{1}\left(D_{2}(x, x, y), d_{2}(x), x\right)+D_{1}\left(d_{2}(x), d_{2}(x), y\right)=0 \tag{53}
\end{equation*}
$$

for all $x, y \in I$. Replacing $y$ for $y \beta x$ in (53) implies that

$$
\begin{equation*}
D_{2}(x, x, y) \beta D_{1}\left(d_{2}(x), x, x\right)+D_{1}\left(d_{2}(x), x, y\right) \beta d_{2}(x)=0 \tag{54}
\end{equation*}
$$

for all $x, y \in I$ and $\beta \in \Gamma$. Replacing $y$ for $x \alpha y$ in (54) induces

$$
\begin{equation*}
d_{2}(x) \alpha y \beta D_{1}\left(d_{2}(x), x, x\right)+D_{1}\left(d_{2}(x), x, x\right) \alpha y \beta d_{2}(x)=0 \tag{55}
\end{equation*}
$$

for all $x, y \in I$ and $\alpha, \beta \in \Gamma$. We now show that $D_{1}\left(d_{2}(x), x, x\right)=0$ for all $x \in I$. Assume that there exists $x_{1} \in I$ such that $D_{1}\left(d_{2}\left(x_{1}\right), x_{1}, x_{1}\right) \neq 0$. Replacing $x$ by $x_{1}$ in (55), then $d_{2}\left(x_{1}\right)=0$ by Lemma 2.4. Therefore $D_{1}\left(d_{2}\left(x_{1}\right), x_{1}, x_{1}\right)=$ $D_{1}\left(0, x_{1}, x_{1}\right)=0$, a contradiction. It follows from Theorem 3.4 that $D_{1}=0$ or $D_{2}=0$.

Corollary 3.7. Let $M$ be a semi-prime $\Gamma$-ring of characteristic not 2 and 3, 5torsion free, I a non-zero ideal of $M$. Let $D(\cdot, \cdot, \cdot)$ be a permuting tri-derivation of $M$, d the trace of $D(\cdot, \cdot, \cdot)$ such that $d(I) \subset I$. If $A n n_{l} I=0$ and $D(d(x), d(x), x)=0$ for all $x \in I$, then $D=0$.
Proof. Replacing $D_{1}(\cdot, \cdot, \cdot)$ and $D_{2}(\cdot, \cdot, \cdot)$ by $D(\cdot, \cdot, \cdot)$ in (54) implies that

$$
\begin{equation*}
D(x, x, y) \beta D(d(x), x, x)+D(d(x), x, y) \beta d(x)=0 \tag{56}
\end{equation*}
$$

for all $x, y \in I$ and $\alpha, \beta \in \Gamma$. Replacing $y$ for $y \alpha z$ in (56), then

$$
\begin{equation*}
D(x, x, y) \alpha z \beta D(d(x), x, x)+D(d(x), x, y) \alpha z \beta d(x)=0 \tag{57}
\end{equation*}
$$

for all $x, y, z \in I$ and $\alpha, \beta \in \Gamma$. Replacing $y$ by $d(x)$ in (57) induces

$$
D(d(x), x, x) \alpha z \beta D(d(x), x, x)=0
$$

for all $x, y, z \in I$ and $\alpha, \beta \in \Gamma$. Thus, since $M$ is a semi-prime $\Gamma$-ring, we have $D=0$ by Corollary 3.5.

Theorem 3.8. Let $M$ be a prime $\Gamma$-ring of characteristic not 2, 3 and 5, 7torsion free, $I$ a non-zero ideal of $M$. Let $D_{1}(\cdot, \cdot, \cdot)$ and $D_{2}(\cdot, \cdot, \cdot)$ be permuting tri-derivations of $M$, and $d_{1}$ and $d_{2}$ traces of $D_{1}(\cdot, \cdot, \cdot)$ and $D_{2}(\cdot, \cdot, \cdot)$, respectively, such that $d_{2}(I) \subset I$. If $d_{1}\left(d_{2}(x)\right)=f(x)$ for all $x \in I$, then $D_{1}=0$ or $D_{2}=0$, where a permuting tri-additive mapping $F(\cdot, \cdot, \cdot): M \times M \times M \rightarrow M$ and $f$ is the trace of $F(\cdot, \cdot, \cdot)$.
Proof. For any $x, y \in I$, we have

$$
d_{1}\left(d_{2}(x+y)\right)+d_{1}\left(d_{2}(-x+y)\right)=f(x+y)+f(-x+y)
$$

Using the hypothesis and $\operatorname{Char} M \neq 2,3$, we have

$$
\begin{align*}
& D_{1}\left(d_{2}(x), d_{2}(x), d_{2}(y)\right)+27 D_{1}\left(D_{2}(x, x, y), D_{2}(x, y, y), D_{2}(x, y, y)\right)  \tag{58}\\
& \quad+9 d_{1}\left(D_{2}(x, x, y)\right)+3 D_{1}\left(d_{2}(x), d_{2}(x), D_{2}(x, x, y)\right) \\
& +6 D_{1}\left(d_{2}(x), d_{2}(y), D_{2}(x, y, y)\right)+3 D_{1}\left(d_{2}(y), d_{2}(y), D_{2}(x, x, y)\right) \\
& +18 D_{1}\left(d_{2}(x), D_{2}(x, x, y), D_{2}(x, y, y)\right) \\
& +9 D_{1}\left(d_{2}(y), D_{2}(x, y, y), D_{2}(x, y, y)\right) \\
& +9 D_{1}\left(d_{2}(y), D_{2}(x, x, y), D_{2}(x, x, y)\right)=F(x, x, y)
\end{align*}
$$

for all $x, y \in I$. Writing $2 x$ for $x$ in (58) and using the fact that $C h a r M \neq 2,3$, we get

$$
\begin{align*}
& 5 D_{1}\left(d_{2}(x), d_{2}(x), d_{2}(y)\right)+27 D_{1}\left(D_{2}(x, x, y), D_{2}(x, y, y), D_{2}(x, y, y)\right)  \tag{59}\\
& \quad+45 d_{1}\left(D_{2}(x, x, y)\right)+63 D_{1}\left(d_{2}(x), d_{2}(x), D_{2}(x, x, y)\right) \\
& +6 D_{1}\left(d_{2}(x), d_{2}(y), D_{2}(x, y, y)\right) \\
& +18 D_{1}\left(d_{2}(x), D_{2}(x, x, y), D_{2}(x, y, y)\right) \\
& +9 D_{1}\left(d_{2}(y), D_{2}(x, x, y), D_{2}(x, x, y)\right)=0
\end{align*}
$$

for all $x, y \in I$. Writing $2 x$ for $x$ in (59) and using the fact that $C h a r M \neq 2,3$, we get

$$
\begin{align*}
& 5 D_{1}\left(d_{2}(x), d_{2}(x), d_{2}(y)\right)+315 D_{1}\left(d_{2}(x), d_{2}(x), D_{2}(x, x, y)\right)  \tag{60}\\
& \quad+45 d_{1}\left(D_{2}(x, x, y)\right)+18 D_{1}\left(d_{2}(x), D_{2}(x, x, y), D_{2}(x, y, y)\right)=0
\end{align*}
$$

for all $x, y \in I$. Writing $2 x$ for $x$ in (60) and using the fact that Char $M \neq 2,3$ and $M$ is 5,7 -torsion free, we get

$$
\begin{equation*}
D_{1}\left(d_{2}(x), d_{2}(x), D_{2}(x, x, y)\right)=0 \tag{61}
\end{equation*}
$$

for all $x, y \in I$. Replacing $y$ for $y \beta z$ in (61) implies

$$
\begin{equation*}
D_{2}(x, x, y) \beta D_{1}\left(d_{2}(x), d_{2}(x), z\right)+D_{1}\left(d_{2}(x), d_{2}(x), y\right) \beta D_{2}(x, x, z)=0 \tag{62}
\end{equation*}
$$

for all $x, y, z \in I$ and $\beta \in \Gamma$. Replacing $y$ for $x \alpha y$ in (62), then

$$
\begin{equation*}
d_{2}(x) \alpha y \beta D_{1}\left(d_{2}(x), d_{2}(x), z\right)+D_{1}\left(d_{2}(x), d_{2}(x), x\right) \alpha y \beta D_{2}(x, x, z)=0 \tag{63}
\end{equation*}
$$

for all $x, y, z \in I$ and $\alpha, \beta \in \Gamma$. Replacing $z$ for $x$ in (63) and using Lemma 2.4, we get

$$
\begin{equation*}
D_{1}\left(d_{2}(x), d_{2}(x), x\right) \alpha y \beta d_{2}(x)=0 \tag{64}
\end{equation*}
$$

for all $x, y \in I$ and $\alpha, \beta \in \Gamma$. Suppose that $D_{1}\left(d_{2}\left(x_{1}\right), d_{2}\left(x_{1}\right), x_{1}\right) \neq 0$ for some $x_{1} \in I$. Replacing $x$ by $x_{1}$ in (64), then $d_{2}\left(x_{1}\right)=0$ since $M$ is a prime $\Gamma$ ring. Therefore $D_{1}\left(d_{2}\left(x_{1}\right), d_{2}\left(x_{1}\right), x_{1}\right)=D_{1}\left(0,0, x_{1}\right)=0$, a contradiction. Hence $D_{1}\left(d_{2}(x), d_{2}(x), x\right)=0$ for all $x \in I$, and so $D_{1}=0$ or $D_{2}=0$ by Theorem 3.6.

## References

[1] W. E. Barnes, On the $\Gamma$-rings of Nobusawa, Pacific J. Math., 18(3)(1966), 411-422.
[2] S. Kyuno, On prime gamma rings, Pacific J. Math., 75(1)(1978), 185-190.
[3] N. Nobusawa, On a generalization of the ring theory, Osaka J. Math., 1 (1964), 81-89.
[4] M. A. Öztürk and M. Sapanci, Orthogonal symmetric bi-derivation on semi-prime gamma rings, Hacettepe Bul. of Sci. and Engineering, Series B, 26(1997), 31-46.
[5] M. A. Öztürk, M. Sapanci and Y. B. Jun, Symetric bi-derivation on prime rings, East Asian Math. J., 15(1) (1999), 105-109.
[6] M. A. Öztürk and M. Sapanci, On generalized symetric bi-derivations in prime rings, East Asian Math. J., 15(2)(1999), 165-176.
[7] M. A. Öztürk, Permuting tri-derivations in prime and semi-prime rings, East Asian Math. J., 15(2)(1999), 177-190.
[8] M. A. Öztürk, M. Sapanci, M. Soytürk and K. H. Kim, Symmetric bi-derivation on prime gamma rings, Sci. Math., 3(2)(2000), 273-281.
[9] M. A. Öztürk, Y. B. Jun and K. H. Kim, Orthogonal traces on semi-prime gamma rings, Sci. Math. Jpn., 53(3)(2001), 491-501; e4, 432-429.
[10] M. Soytürk, Some generalizations in prime ring with derivation, Ph. D. Thesis, Cum. Univ. Graduate School of Natural and Applied Scien. Dept. Math. (1994).
[11] M. Soytürk, The commutative in prime gamma rings with derivations, Turkish J. Math., 18(1994), 149-155.

