• Title/Summary/Keyword: rigid inclusion

Search Result 30, Processing Time 0.022 seconds

Study on the Chemical Polymerization of Pyrrole in the Presence of Cyclic Poly(oxyethylene)s (환형 폴리옥시에틸렌 존재하의 피롤의 화학적 중합에 관한 연구)

  • 차국찬;김진환;배진영
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.568-574
    • /
    • 2002
  • Inclusion compounds using cyclic poly(oxyethylene)s as host molecules have been used to polymerize pyrrole chemically in aqueous medium. This general synthetic strategy makes it possible to grow rigid aromatic polymers in aqueous medium by chemical oxidation method. It is an easy method to obtain rigid polymers in a very mild manner. Some threaded and water-soluble polypyrroles are obtained, and their characterization is performed by NMR, IR, UV, and MALDI-TOF MS measurements.

Bearing capacity and failure mechanism of skirted footings

  • Shukla, Rajesh P.;Jakka, Ravi S.
    • Geomechanics and Engineering
    • /
    • v.30 no.1
    • /
    • pp.51-66
    • /
    • 2022
  • The article presents the results of finite element analyses carried out on skirted footings. The bearing capacity increases with the provision of the flexible and rigid skirt, but the effectiveness varies with various other factors. The skirts are more efficient in the case of cohesionless soils than cohesive and c-ϕ soils. Efficiency reduces with an increase in the soil strength and footing depth. The rigid skirt is relatively more efficient compared to the flexible skirt. In contrast, to the flexible skirt, the efficiency of the rigid skirt increases continuously with skirt length. The difference in the effectiveness of both skirts becomes more noticeable with an increase in the strength parameters, skirt length, and footing depth. The failure mechanism also changes significantly with the inclusion of a rigid skirt. The rigid skirt behaves as a solid embedded footing, and the failure mechanism becomes confined with an increase in the skirt length. Few small-scale laboratory tests were carried out to study the flexible and rigid skirt and verify the numerical study results. The numerical analysis results are further used to develop nonlinear equations to predict the enhancement in bearing capacity with the provision of the rigid and flexible skirts.

Evaluating the performance AASHTOWare's mechanistic-empirical approach for roller-compacted concrete roadways

  • Emin Sengun
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.445-469
    • /
    • 2024
  • The Federal Highway Administration (FHWA) has recommended the use of AASHTOWare Pavement Mechanistic-Empirical Design (PMED) software for Roller-Compacted Concrete (RCC) pavement design, but specific calibration for RCC is missing. This study investigates the software's capacity to predict the long-term performance of RCC roadways within the framework of conventional concrete pavement calibration. By reanalyzing existing RCC projects in several U.S. states: Colorado, Arkansas, South Carolina, Texas, and Illinois, the study highlights the need for specific calibration tailored to the unique characteristics of RCC. Field observations have emphasized occurrence of early distresses in RCC pavements, particularly transverse-cracking and joint-related issues. Despite data challenges, the AASHTOWare PMED software exhibits notable correlation between its long-term predictions and actual field performance in RCC roadways. This study stresses that RCC applications with insufficient joint spacing and thickness are prone to premature cracking. To enhance the accuracy of RCC pavement design, it is essential to discuss the inclusion of RCC as a dedicated rigid pavement option in AASHTOWare PMED. This becomes particularly crucial when the rising popularity of RCC roadways in the U.S. and Canada is considered. Such an inclusion would solidify RCC as a viable third option alongside Jointed Plain Concrete Pavements (JPCP) and Continuously Reinforced Concrete Pavements (CRCP) for design and deployment of rigid pavements. The research presents a roadmap for future calibration endeavors and advocates for the integration of RCC pavement as a distinct pavement type within the software. This approach holds promise for achieving more precise RCC pavement design and performance predictions.

Thermal stress Intensity Factors for the Interfacial Crack on a Cusp-Type Inclusion (커스프형 강체함유물 상의 접합경계면 균열에 대한 열응력세기계수)

  • 이강용;장용훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1255-1265
    • /
    • 1992
  • Under uniform heat flow, the thermal stress intensity factors for the interfacial crack on a rigid cusp-type inclusion are determined by Hilbert problem expressed with complex variable. The thermal stress intensity factors are expressed in terms of the periodic function of heat flow angle. When the tip of the interfacial crack meets that of the cusp crack, the thermal stress intensity factors have singularities. The thermal stress intensity factors at the interfacial crack tip located in the distance from the cusp crack tip vary with the location of the interfacial crack tip. From the results of the analysis, the complex potential functions and the thermal stress intensity factors for the cusp-type inclusion without the interfacial crack are derived under the cusp surface boundary conditions insulated or fixed to zero relative temperature.

Synthesis of Novel Polyol Based on ${\beta}$-Cyclodextrin and Its Rigid PU Foam with Low Thermal Conductivity and High Strength (${\beta}$-Cyclodextrin을 사용한 새로운 Polyol 합성 및 낮은 열전도도와 높은 강도를 갖는 경질 PU Foam의 제조)

  • Park, Juhan;Kim, Taeyoon;Kim, Dong Ho;Moon, Jin-Bok;Chung, Ildoo
    • Journal of Adhesion and Interface
    • /
    • v.13 no.4
    • /
    • pp.163-170
    • /
    • 2012
  • Although ${\beta}$-cyclodextrin (${\beta}$-CD) has been used as medicine, agrichemical, food, cosmetic, antioxidant, anti-volatile agent, anti-hygroscopic agent, fading-protecting agent, and emulsifier due to its ability to form inclusion complex by enclosing another molecule (guest molecule), it has been restricted in practical application because of its low solubility in water and organic solvent. In this study, ${\beta}$-CD derivative as a new polyol with inclusion characteristics against Bisphenol A and cyclopropane, foaming agent for polyurethane (PU), and with improved solubility was synthesized, characterized and used to formulate rigid PU foam with better thermal conductivity and compressive strength compared to that from commercial polyols.

Seismic loading response of piled systems on soft soils - Influence of the Rayleigh damping

  • Jimenez, Guillermo A. Lopez;Dias, Daniel;Jenck, Orianne
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.155-170
    • /
    • 2022
  • An accurate analysis of structures supported on soft soils and subjected to seismic loading requires the consideration of the soil-foundation-structure interaction. An important aspect of this interaction lies with the energy dissipation due to soil material damping. Unlike advanced constitutive models that can induce energy loss, the use of simple elastoplastic constitutive models requires additional damping. The frequency dependent Rayleigh damping is a formulation that is frequently used in dynamic analysis. The main concern of this formulation is the correct selection of the target damping ratio and the frequency range where the response is frequency independent. The objective of this study is to investigate the effects of the Rayleigh damping parameters in soil-pile-structure and soil-inclusion-platform-structure systems in the presence of soft soil under seismic loading. Three-dimensional analyses of both systems are carried out using the finite difference software Flac3D. Different values of target damping ratios and minimum frequencies are utilized. Several earthquakes are used to study the influence of different excitation frequencies in the systems. The soil response in terms of accelerations, displacements and strains is obtained. For the rigid elements, the results are presented in terms of bending moments and normal forces. The results show that when the frequency of the input motion is close to the minimum (central) frequency in the Rayleigh damping formulation, the overdamping amount is reduced, and the surface spectral acceleration of the analyzed pile and inclusion systems increases. Thus, the bending moments and normal forces throughout the piles and inclusions also increase.

A Numerical Approach to Effective Elastic Moduli of Solids with Microinclusions and Microvoids (미소 개재물과 기공을 갖는 고체의 유효탄성계수에 대한 수치적 접근)

  • Kang, Sung-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.852-859
    • /
    • 2009
  • For the analysis of solids containing a number of microinclusions or microvoids, in which the mechanical effect of each inclusion or void, a numerical approach is need to be developed to understand the mechanical behavior of damaged solids containing these defects. In this study, the simulation method using the natural element method is proposed for the analysis of effective elastic moduli. The mechanical effect of each inclusion or void is considered by controlling the material constants for Gaussian points. The relationship between area fraction of microinclusions or microvoids and effective elastic moduli is studied to verify the validity of the proposed method. The obtained results are in good agreement with the theoretical results such as differential method, self-consistent method, Mori-Tanaka method, as well as the numerical results by rigid body spring model.

A Study on the Development of Cathode-Ray Tube Die Using Hot forging (열간단조를 이용한 브라운관 금형의 개발에 관한 연구)

  • 차도진;조종래;배원병;황남철
    • Transactions of Materials Processing
    • /
    • v.9 no.5
    • /
    • pp.533-538
    • /
    • 2000
  • This study has been carried out to develop a CRT die using hot forging. The conventional CRT die made by casting has defects such as void and inclusion. These defects of the cast die make micro-spots on the surface of the CRT which affect the quality of the final product. So, a hot forging process is developed to avoid these defects of CRT die by the model material test and the rigid-plastic FEM. Firstly, model material tests are carried out with plasticine billets in order to investigate the material flow pattern in the die cavity and to get the reasonable initial values for designing the preform in the FE simulation. And then a finite element analysis has been performed to Predict the preform and the forging load of a CRT die. We also suggest an integrated die-set which combines two die-sets into one die-set to save manufacturing time and cost in case of similar die-size.

  • PDF

Prediction of Chiral Discrimination by β-Cyclodextrins Using Grid-based Monte Carlo Docking Simulations

  • Choi, Young-Jin;Kim, Dong-Wook;Park, Hyung-Woo;Hwang, Sun-Tae;Jeong, Karp-Joo;Jung, Seun-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.5
    • /
    • pp.769-775
    • /
    • 2005
  • An efficiency of Monte Carlo (MC) docking simulations was examined for the prediction of chiral discrimination by cyclodextrins. Docking simulations were performed with various computational parameters for the chiral discrimination of a series of 17 enantiomers by $\beta$-cyclodextrin ($\beta$-CD) or by 6-amino-6-deoxy-$\beta$-cyclodextrin (am-$\beta$-CD). A total of 30 sets of enantiomeric complexes were tested to find the optimal simulation parameters for accurate predictions. Rigid-body MC docking simulations gave more accurate predictions than flexible docking simulations. The accuracy was also affected by both the simulation temperature and the kind of force field. The prediction rate of chiral preference was improved by as much as 76.7% when rigid-body MC docking simulations were performed at low-temperatures (100 K) with a sugar22 parameter set in the CHARMM force field. Our approach for MC docking simulations suggested that the conformational rigidity of both the host and guest molecule, due to either the low-temperature or rigid-body docking condition, contributed greatly to the prediction of chiral discrimination.

Seismic Anslysis of Rotating Machine-Foundation System (회전기계-기초의 상호작용을 고려한 지진해석)

    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.1-12
    • /
    • 1998
  • The seismic behaviour of rotating machine-foundation systems subjected to six-component nonstationary earthquake ground accelerations is analyzed. The rotating machine-foundation system is idealized by using discs, rotating shaft, fluid-film journal bearings, pedestals, and space frame foundation. Thus, governing equations of motion for the rotating machine-foundation system are obtained by considering Gyroscopic effect, Coriolis effect, dynamic characteristics of fluid-film journal bearings, and translational and rotational motions of seismic rigid base. The influences due to Gyroscopic effects, Coriolis effects, and rotational motions of seismic base on the overall structural response are demonstrated by a numerical example. The results show that the inclusion of base rotations and Gyroscopic effects contributes significantly to the system response.

  • PDF