• Title/Summary/Keyword: rigid bodies

Search Result 194, Processing Time 0.031 seconds

Dynamic Analysis of Constrained Multibody Systems Undergoing Collision (충돌하는 구속 다물체계의 동역학 해석)

  • Park, Jeong-Hun;Yu, Hong-Hui;Yang, Hyeon-Ik;Hwang, Yo-Ha
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.535-542
    • /
    • 2000
  • This paper presents a method for the dynamic analysis of constrained multibody systems undergoing abrupt collision. The proposed method uses a longer time interval to check collision than that of c onventional method. This reduces the computational effort significantly. To calculate collision points on two colliding rigid bodies, one may introduce constraints of contact. However, this causes reduction of degree of freedom and difficulty of numerical analysis. The proposed method can calculate collision points without above mentioned problems. Three numerical examples are given to demonstrate the computational efficiency and the usefulness of the proposed method.

Analysis for Response of Launcher System with Continuous Impact Load (연속충격을 고려한 발사대 반응특성 해석)

  • Lim, O-Kaung;Yoo, Wan-Suk;Choi, Eun-Ho;Ryu, Jae-Bong;Lee, Chang-Hoon;Kim, Sang-Geun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.718-723
    • /
    • 2007
  • A three dimensional multibody modeling of a launcher system was developed and dynamic characteristics of the system was carried out. All the components were modeled as rigid bodies, All the components of system, ie; chassis, turret, cage and suspension parts, are modeled as rigid. The force interaction between the ground and tire was modeled as a point contact model. The factors were selected as cause and effect diagram of the MINITAB. To see effect of the stiffness, damping, mass at the launcher system, several cases of suspension parameters were compared and optimal values were selected. The stiffness and the damping coefficient were selected as design variables to minimize the required time for the next fire. The dynamic simulation was carried out using the ADAMS, and the MINITAB was employed for data analysis.

  • PDF

Collaborative Authoring based on Physics Simulation

  • Shahab, Qonita M.;Kwon, Yong-Moo;Ko, Hee-Dong
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.612-615
    • /
    • 2007
  • This research studies the Virtual Reality simulation of Newton's physics law on rigid body type of objects for physics learning. With network support, collaborative interaction is enabled so that people from different places can interact with the same set of objects in Collaborative Virtual Environment. The taxonomy of the interaction in different levels of collaboration is described as: distinct objects and same object, in which there are same object - sequentially, same object - concurrently - same attribute, and same object - concurrently - distinct attributes. The case studies are the interaction of users in two cases: destroying and creating a set of arranged rigid bodies. We identify a specific type of application for contents authoring with modeling systems integrated with real-time physics and implemented in VR system. In our application called Virtual Dollhouse, users can observe physics law while constructing a dollhouse using existing building blocks, under gravity effects.

  • PDF

Suppression of Sound Transmission through Composite Plate into Cavity with Anisotropic Piezoelectric Actuators (이방성 압전 작동기를 이용한 복합재료 평판을 통한 공동내의 소음 억제)

  • 윤기원;김승조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.695-700
    • /
    • 1997
  • A direct boundary element method(DBEM) is developed for thin bodies whose surfaces are rigid or compliant. The Helmholtz integral equation and its normal derivative integral equation are adopted simultaneously to calculate the pressure on both sides of the thin body, instead of the jump values across it, to account for the different surface conditions of each side. Unlike the usual assumption, the normal velocity is assumed to be discontinuous across the thin body. In this approach, only the neutral surface of the thin body has to be discretized. The method is validated by comparison with analytic and/or numerical results for acoustic scattering and radiation from several surface conditions of the thin body; the surfaces are rigid when stationary or vibrating, and part of the interior surface is lined with a sound-absorbing material.

  • PDF

Dynamic Stress Analysis of Flexible Multibody using DADS (DADS를 이용한 유연 다물체의 동응력 해석)

  • Ahn, K.W.;Seo, K.H.;Hwang, W.G.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.107-112
    • /
    • 1998
  • A great deal of time and effort are required to evaluate the safety and durability of a vehicle structure in the vehicle development stage. It is difficult to find the reasons for cracks which occur in the body and frame of a vehicle during tests. Recently computer aided engineering techniques have been utilized to solve the problems of safety and durability of vehicles. In this study, a dynamic stress analysis is performed on the frame of the vehicle by rigid and flexible multibody dynamics techniques. The result of the analysis is compared to that of the actual test. The full vehicle dynamic models for the rigid and flexible bodies are developed by DADS package. The modal coordinate system is used to save time for the dynamic stress analysis. The flexible multibody dynamic models have 12 normal modes considering the flexibility of the frame. Dynamic stresses arc calculated by relating the stress influence coefficients and the applied forces.

  • PDF

Primary tooth aspiration during conscious sedation with N2O: foreign body removal with rigid bronchoscopy

  • Yeeun Jo;Kyungmin Rim;Dohyun Kwon;Jaemyung Ahn;Jun-Young Paeng
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.24 no.3
    • /
    • pp.205-211
    • /
    • 2024
  • A 7-year-old girl visited the Samsung Medical Center emergency room for primary tooth aspiration during primary tooth extraction under conscious sedation with N2O. The patient showed no signs of respiratory complications. Chest radiography and CT revealed a tooth in the right bronchi. Foreign body removal using rigid bronchoscopy was performed on the day of aspiration. With close monitoring of the airway in the pediatric ICU, extubation was performed the next day, and the patient was discharged the same day. The primary objective of this case report was to highlight the potential risk of aspiration associated with the use of N2O gas for conscious sedation.

IMMERSED BOUNDARY METHOD FOR COMPRESSIBLE VISCOUS FLOW AROUND MOVING BODIES (이동하는 물체 주위의 압축성 유동에 대한 가상경계법)

  • Cho, Yong;Chopra, Jogesh;Morris, Philip J.
    • Journal of computational fluids engineering
    • /
    • v.13 no.3
    • /
    • pp.35-43
    • /
    • 2008
  • A methodology for the simulation of compressible high Reynolds number flow over rigid and moving bodies on a structured Cartesian grid is described in this paper. The approach is based on a modified version of the Brinkman Penalization method. To avoid oscillations in the vicinity of the body and to simulate shcok-containing flows, a Weighted Essentially Non-Oscillatory scheme is used to discretize the spatial flux derivatives. For high Reynolds number viscous flow, two turbulence models of the two-equation Menter's SST URANS model and a two-equation Detached Eddy Simulation are implemented. Some simple flow examples are given to assess the accuracy of the technique. Finally, a moving grid capability is demonstrated.

IMMERSED BOUNDARY METHOD FOR COMPRESSIBLE VISCOUS FLOW AROUND MOVING BODIES (이동하는 물체 주위의 압축성 유동에 대한 가상경계법)

  • Cho, Yong;Chopra, Jogesh;Morris, Philip J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.200-208
    • /
    • 2007
  • A methodology for the simulation of compressible high Reynolds number flow over rigid and moving bodies on a structured Cartesian grid is described in this paper. The approach is based on a modified version of the Brinkman Penalization method. To avoid oscillations in the vicinity of the body and to simulate shcok-containing flows, a Weighted Essentially Non-Oscillatory scheme is used to discretize the spatial flux derivatives. For high Reynolds number viscous flow, two turbulence models of the two-equation Menter's SST URANS model and a two-equation Detached Eddy Simulation are implemented. Some simple flow examples are given to assess the accuracy of the technique. Finally, a moving grid capability is demonstrated.

  • PDF

Development of a Mathematical Model for Effect of Scoliosis Surgical Correction (구조해석을 통한 척추측만증 교정 분석에 필요한 모델 개발)

  • 김영은;최형연;손창규;이광희;이춘기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1059-1061
    • /
    • 2002
  • A FE model is to develop a personalized biomechanical model of the scoliotic spine that will allow the design of clinical test providing optimal estimation of the post-operation results. A flexible multi-body model of the spine including rib cage, clavicle, and scapular was developed to simulate several mobility simulations. Vertebrae, clavicle and scapular were represented using rigid bodies and ribs and sternum were modeled as flexible bodies. Kinematical Joints and spring elements were used to represent the intervertebral disc and ligaments respectively. Postero-anterior and lateral radiographics of a scoliotic spine were used to represent a 3D reconstruction. CT data for same patient were also used to verify vertebrae rotation driven from postero-anterior and lateral radiographic images. Simulated results showed good reducibility almost uniformly distributed along the spinal segments. It was also found that boundary and loading conditions, required to mimic the operation procedures, were proven to be very sensitive parameters to its results rather than its mechanical properties

  • PDF

Kinematic Design Sensitivity Analysis of Suspension systems Using Direct differentiation (직접미분법을 이용한 현가장치의 기구학적 민감도해석)

  • 민현기;탁태오;이장무
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.38-48
    • /
    • 1997
  • A method for performing kinematic design sensitivity analysis of vehicle suspension systems is presented. For modeling of vehicle suspensions, the multibody dynamic formulation is adopted, where suspensions are assumed as combination of rigid bodies and ideal frictionless joints. In a relative joint coordinate setting, kinematic constraint equations are obtained by imposing cut-joints that transform closed-loop shape suspension systems into open-loop systems. By directly differentiating the constraint equations with respect to kinematic design variables, such as length of bodies, notion axis, etc., sensitivity equations are derived. By solving the sensitivity equations, sensitivity of static design factors that can be used for design improvement, can be obtained. The validity and usefulness of the method are demonstrated through an example where kinematic sensitivity analysis of a MacPherson strut suspension of performed.

  • PDF