• Title/Summary/Keyword: rigid/semi-rigid joint

Search Result 53, Processing Time 0.024 seconds

Estimation of semi-rigid joints by cross modal strain energy method

  • Wang, Shuqing;Zhang, Min;Liu, Fushun
    • Structural Engineering and Mechanics
    • /
    • v.47 no.6
    • /
    • pp.757-771
    • /
    • 2013
  • We present a semi-rigid connection estimation method by using cross modal strain energy method. While rigid or pinned assumptions are adopted for steel frames in traditional modeling via finite element method, the actual behavior of the connections is usually neither. Semi-rigid joints enable connections to be modeled as partially restrained, which improves the quality of the model. To identify the connection stiffness and update the FE model, a newly-developed cross modal strain energy (CMSE) method is extended to incorporate the connection stiffness estimation. Meanwhile, the relations between the correction coefficients for the CMSE method are derived, which enables less modal information to be used in the estimation procedure. To illustrate the capability of the proposed parameter estimation algorithm, a four-story frame structure is demonstrated in the numerical studies. Several cases, including Semi-rigid joint(s) on single connection and on multi-connections, without and with measurement noise, are investigated. Numerical results indicate that an excellent updating is achievable and the connection stiffness can be estimated by CMSE method.

Buckling Analysis for Single Layer Latticed Domes considering the Change of Joint Rigidity (접합부 강성변화를 고려한 단층 래티스 돔의 좌굴해석)

  • 이후진;권택진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.337-344
    • /
    • 2001
  • This paper is concerned with the change of joint rigidity in estimating the degree of semi-rigidity of connections and the buckling load in a single layer latticed dome. The estimations are based on information about the ratio for the rotational stiffness of the connection to the flexural stiffness of the member and the minimum eigenvalue of a structure for pinned, semi-rigid and completely rigid cases, respectively. Connection characteristics are reflected in the ratio control of joint rigidity for the DOFs to be related using the spring element by FEM.

  • PDF

Analysis of rigid and semi-rigid steel-concrete composite joints under monotonic loading - Part II: Parametric study and comparison with the Eurocode 4 proposal

  • Amadio, C.;Fragiacomo, M.
    • Steel and Composite Structures
    • /
    • v.3 no.5
    • /
    • pp.371-382
    • /
    • 2003
  • This paper analyses the response of rigid and semi-rigid steel-concrete composite joints under monotonic loading. The influence of some important parameters, such as the presence of column web stiffening and the mechanical properties of component materials, is investigated by using a three-dimensional finite element modelling based on the Abaqus code. Numerical and experimental responses of different types of composite joints are also compared with the analytical results obtained using the component approach proposed by Eurocode 4. The results obtained with this approach generally fit well with the numerical and experimental values in terms of strength. Conversely, some significant limits arise when evaluating initial stiffness and non-linear behaviour of the composite joint.

Analysis of rigid and semi-rigid steel-concrete composite joints under monotonic loading - Part I: Finite element modelling and validation

  • Amadio, C.;Fragiacomo, M.
    • Steel and Composite Structures
    • /
    • v.3 no.5
    • /
    • pp.349-369
    • /
    • 2003
  • The paper concerns the modelling of rigid and semi-rigid steel-concrete composite joints under monotonic loading through use of the Abaqus program, a widespread finite element code. By comparing numerical and experimental results obtained on cruciform tests, it is shown that the proposed modelling allows a good fit of the global joint response in terms of moment-rotation law. Even the local response in terms of stresses and strains is adequately predicted. Hence, this numerical approach may represent a useful tool for attaining a better understanding of experimental results. It may also be used to perform parametric analyses and to calibrate simplified mechanical models for practical applications.

Component method model for predicting the moment resistance, stiffness and rotation capacity of minor axis composite seat and web site plate joints

  • Kozlowski, Aleksander
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.469-486
    • /
    • 2016
  • Codes EN 1993 and EN 1994 require to take into account actual joint characteristics in the global analysis. In order to implement the semi-rigid connection effects in frame design, knowledge of joint rotation characteristics ($M-{\phi}$ relationship), or at least three basic joint properties, namely the moment resistance $M_R$, the rotational stiffness $S_j$ and rotation capacity, is required. To avoid expensive experimental tests many methods for predicting joint parameters were developed. The paper presents a comprehensive analytical model that has been developed for predicting the moment resistance $M_R$, initial stiffness $S_{j.ini}$ and rotation capacity of the minor axis, composite, semi-rigid joint. This model is based on so-called component method included in EN 1993 and EN 1994. Comparison with experimental test results shows that a quite good agreement was achieved. A computer program POWZ containing proposed procedure were created. Based on the numerical simulation made with the use of this program and applying regression analysis, simplified equations for main joint properties were also developed.

Structural behavior of aluminum reticulated shell structures considering semi-rigid and skin effect

  • Liu, Hongbo;Chen, Zhihua;Xu, Shuai;Bu, Yidu
    • Structural Engineering and Mechanics
    • /
    • v.54 no.1
    • /
    • pp.121-133
    • /
    • 2015
  • The aluminum dome has been widely used in natatorium, oil storage tank, power plant, coal, as well as other industrial buildings and structures. However, few research has focused on the structural behavior and design method of this dome. At present, most designs of aluminum alloy domes have referred to theories and methods of steel spatial structures. However, aluminum domes and steel domes have many differences, such as elasticity moduli, roof structures, and joint rigidities, which make the design and analysis method of steel spatial structures not fully suitable for aluminum alloy dome structures. In this study, a stability analysis method, which can consider structural imperfection, member initial curvature, semi-rigid joint, and skin effect, was presented and used to study the stability behavior of aluminum dome structures. In addition, some meaningful conclusions were obtained, which could be used in future designs and analyses of aluminum domes.

A Study on the Non-linear Analysis of Steel Frame with Semi-rigid Connections (반강접성을 고려한 강뼈대 구조물의 비선형 해석에 관한 연구)

  • 이종석;이상엽;김정훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.111-118
    • /
    • 1997
  • Generally, H-section is used for columns and beams in the middle and low building steel structure, But it has a axis and a weak axis. Thus if H-section is used for columns, the structure needs reinforcement on the weak axis. Therefore recently, square hollow section(S.H.S) is used for columns because it is able to cover the vulnerability of H-section. Structural analysis is usually executed under the assumption that connections are either ideally pinned joint or fully joint. Actually all connections are semi-rigid which possess a rotational stiffness. Therefore it can be designed economically as using the property of connections which has a rotational stiffness. This paper presents a prediction model curve which is fitted with Kishi-Chen Power Model about the behavior of connection between H-beam and S.H.S column in the previous experimental paper. It also suggests the new analysis algorithm considering the non-linear of semi-rigid connection and the geometrical non-linear under the effect of axial force.

  • PDF

The Structural Behavior of the Frames with Semi-Rigid Connections Using Reformed T-stubs (개량 T-stub를 이용한 반강접 골조의 거동)

  • Lee, Myung Jae;Cho, Won Hyuck
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.4 s.47
    • /
    • pp.339-350
    • /
    • 2000
  • The objective of this study is to investigate the structural behavior of the beam to column connection with reformed T-stubs and to ascertain the application of semi-rigid connection with reformed T-stubs to middle high rise buildings. The tests of steel frame using semi-rigid connections with reformed T-stub and existing T-stub were performed under cyclic loading condition. Finite element analysis was also carried out and the results of FEM were compared with results of tests. The thickness of reformed T-stub and the distance of bolt were used for parameters in the analysis. The structural behaviors of reformed T-stub were understood qualitatively and the possibility of application of semi-rigid connections with reformed T-stubs was ascertained.

  • PDF

A study on experiment from the Stair Joints Constructed with PC system part of it using the HI-FORM DECK (HI-FORM DECK를 이용한 부분 PC 계단 접합부의 접합방식에 따른 실험적 연구)

  • Chang, Kug-Kwan;Lee, Eun-Jin;Jin, Byung-Chang;Kang, Woo-Joo;Han, Tae-Kyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.9-12
    • /
    • 2008
  • The semi-rigid joint is the shape of middle that can supplement the defect of pin joints and accept the good point of rigid joints. Recently, a study on the pin joints is activated in the country, but because the study on semi-rigid joints is not many, this study tried to prove with producing test model of three shape. The test models are rigid joint HI-R, semi-rigid joint HI-S, pin joint HI-P. As a result of the test, respectively HI-R, HI-S, HI-P appeared shear failure of joint, flexure failure of the top fixing, flexure failure of the lower part slipping stair slab, and the maximum strength is measured to 51.74, 51.4, 24.63kN, the stiffness is appeared 1.58, 1.19, 0.37 respectively, The yield strength is respectively kept 44.5, 47.3, 24kN, and ductility ratio is appeared to 3.31, 2.32, 1.54, when is based on KBC code, sag of the acting service load is appeared that HI-P model is over the standard. When is based on distribution of bars strain ratio, HI-S seems similar behavior incipiently, but after the yield, the semi-rigid joint was able to be judged better than pin joint because of the stress allotment of joint internal elements.

  • PDF

Investigation of semi-rigid bolted beam connections on prefabricated frame joints

  • Irtem, E.;Turker, K.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.4
    • /
    • pp.397-408
    • /
    • 2001
  • Bolted connections are used commonly in the precast reinforced concrete structures. In such structures, to perform structural analysis, behaviour of connections must be determined. In this study, elastic rotation stiffness of semi-rigid bolted beam connections, applied in industrial precast structures, are determined by finite element methods. The results obtained from numerical solutions are compared with an experimental study carried out for the same connections. Furthermore, stress distributions of the connection zone are determined and a reinforcement scheme is proposed. Thus, a more appropriate reinforcement arrangement for the connection zone is enabled. The connection joint of the prefabricated frame is described as rigid, hinged or elastic, and a static analysis of the frame system is performed for each case. Values of bending moments and displacements obtained from the three solutions are compared and the effects of elastic connection are discussed.