• Title/Summary/Keyword: right-angled Artin groups

Search Result 4, Processing Time 0.021 seconds

RIGHT-ANGLED ARTIN GROUPS ON PATH GRAPHS, CYCLE GRAPHS AND COMPLETE BIPARTITE GRAPHS

  • Lee, Eon-Kyung;Lee, Sang-Jin
    • Korean Journal of Mathematics
    • /
    • v.29 no.3
    • /
    • pp.577-580
    • /
    • 2021
  • For a finite simplicial graph 𝚪, let G(𝚪) denote the right-angled Artin group on the complement graph of 𝚪. For path graphs Pk, cycle graphs C and complete bipartite graphs Kn,m, this article characterizes the embeddability of G(Kn,m) in G(Pk) and in G(C).

ON RIGHT-ANGLED ARTIN GROUPS WHOSE UNDERLYING GRAPHS HAVE TWO VERTICES WITH THE SAME LINK

  • Kim, Jongtae;Moon, Myoungho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.543-558
    • /
    • 2013
  • Let ${\Gamma}$ be a graph which contains two vertices $a$, $b$ with the same link. For the case where the link has less than 3 vertices, we prove that if the right-angled Artin group A(${\Gamma}$) contains a hyperbolic surface subgroup, then A(${\Gamma}$-{a}) contains a hyperbolic surface subgroup. Moreover, we also show that the same result holds with certain restrictions for the case where the link has more than or equal to 3 vertices.

CO-CONTRACTIONS OF GRAPHS AND RIGHT-ANGLED COXETER GROUPS

  • Kim, Jong-Tae;Moon, Myoung-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.1057-1065
    • /
    • 2012
  • We prove that if $\widehat{\Gamma}$ is a co-contraction of ${\Gamma}$, then the right-angled Coxeter group $C(\widehat{\Gamma})$ embeds into $C({\Gamma})$. Further, we provide a graph ${\Gamma}$ without an induced long cycle while $C({\Gamma})$ does not contain a hyperbolic surface group.