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ON RIGHT-ANGLED ARTIN GROUPS WHOSE

UNDERLYING GRAPHS HAVE TWO VERTICES

WITH THE SAME LINK

Jongtae Kim and Myoungho Moon

Abstract. Let Γ be a graph which contains two vertices a, b with the
same link. For the case where the link has less than 3 vertices, we prove
that if the right-angled Artin group A(Γ) contains a hyperbolic surface
subgroup, then A(Γ−{a}) contains a hyperbolic surface subgroup. More-
over, we also show that the same result holds with certain restrictions for
the case where the link has more than or equal to 3 vertices.

1. Introduction

Let Γ be a finite simple graph with the vertex set V (Γ) = {v1, . . . , vn}.
Recall that a finite simple graph is a finite graph without loops and multiple
edges. In a finite simple graph, for a pair of two vertices, there is at most one
edge having them as endpoints. A right-angled Artin group A(Γ) on the graph
Γ is the group given by the presentation with generators v1, . . . , vn and defining
relators [vi, vj ] whenever there is an edge having vi and vj as endpoints. The
graph Γ is called the defining graph of A(Γ). It is known that two right-angled
Artin groups are isomorphic if and only if their defining graphs are isomorphic
as graphs ([6]).

A subgraph Γ′ of a simple graph Γ is called an induced subgraph if for each
pair of vertices a, b of Γ′, there is an edge having a and b as endpoints in Γ′

whenever there is an edge having a and b as endpoints in Γ.
Note that for a subset S of the vertex set of a graph Γ, there is a unique in-

duced subgraph of Γ having S as the vertex set. This induced subgraph is called
the subgraph generated by S and denoted by 〈S〉. For a subset {v1, . . . , vm}
of vertices in Γ, we will denote the induced subgraph generated by V (Γ) −
{v1, . . . , vm} by Γ − {v1, . . . , vm}. It can be shown that if Γ′ is an induced
subgraph of a graph Γ, then A(Γ′) is isomorphic to a subgroup of A(Γ). More
precisely, if Γ′ is an induced subgraph of a graph Γ, then A(Γ′) is isomorphic
to the subgroup generated by V (Γ′) in A(Γ) (for a proof, see [8]).
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Motivated by the virtual Haken conjecture in 3-manifold theory, it has been
an intriguing question to ask whether given a graph Γ the right-angled Artin
group A(Γ) contains the fundamental group of a closed orientable hyperbolic
surface or not ([4, 5, 9, 10, 12]). For convenience, we will call the fundamental
group of a closed orientable hyperbolic surface by a hyperbolic surface group.

An n-cycle, denoted by Cn, is the graph that is homeomorphic to the circle
with n edges. H. Servatius, C. Droms, and B. Servatius showed that if Γ
contains an induced n-cycle with n ≥ 5, called a long cycle, then A(Γ) contains
a hyperbolic surface group ([12]). S. Kim [9] showed that there is a graph Γ
such that A(Γ) contains a hyperbolic surface group although Γ does not contain
any long cycle. A graph is called chordal if there is no induced n-cycle with
n ≥ 4 in the entire graph. He also showed that if a graph Γ is chordal, then the
right-angled Artin group on Γ does not contain a hyperbolic surface subgroup
([10]).

In [4], Crisp, Sageev, and Sapir found eight special graphs with less than
or equal to 8 vertices and gave a description of a computer based proof that
every graph Γ with less than or equal to 8 vertices contains either one of the
eight special graphs or a long cycle as an induced subgraph if and only if A(Γ)
contains a hyperbolic surface group.

In that paper, they raised several questions on right-angled Artin groups
which contain a hyperbolic surface group. Among them, we will discuss on
Questions 1.1 and 1.2 below. They are reasonable questions to ask, because
the problem of determining whether the right-angled Artin group on a given
graph contains a hyperbolic surface group can be reduced to a simpler graph
case if the answers to them are yes.

Question 1.1 ([4]). Suppose a graph Γ contains two vertices a, b with the
same links and A(Γ) contains a hyperbolic surface subgroup. Does A(Γ−{a})
contain a hyperbolic surface subgroup?

Recall that for a vertex v in a graph Γ, the set of vertices adjacent to v is
called the link of v and denoted by link(v). Note that v itself is not in the
link of v. The main purpose of this paper is to provide a positive answer to
this question when the link has less than or equal to 4 vertices with certain
restrictions.

Question 1.2 ([4]). Suppose that a graph Γ is an amalgamation of two proper
subgraphs Γ1,Γ2 along a complete graph L and the right-angled Artin group
A(Γ) contains a hyperbolic surface subgroup. Is it true that A(Γ1) or A(Γ2)
also contain a hyperbolic surface subgroup?

A complete graph is a simple graph each of whose vertices is adjacent to all
the other vertices. It is not known whether the answer for this question is yes
or no. In [4], Crisp, Sageev, and Sapir mentioned that the question can be
answered affirmatively for one vertex amalgamation case, and they omitted a
proof for that result. We give a detailed proof for one vertex amalgamation
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case, and use it to obtain the results regarding Question 1.1. Through a careful
observation, we obtain a similar result when L is not complete but has the
property that every vertex has the same link (see Theorem 3.4).

A dissection on a compact surface, established by Crisp and Wiest [5], is a
geometric tool to deal with homomorphisms from hyperbolic surface groups to
right-angled Artin groups. In Section 2, a part of the basic cutting lemma on
dissections by Crisp, Sageev, and Sapir in [4] will be proved. In Section 3, we
will discuss on Question 1.1 and Question 1.2.

In order to answer Question 1.1 and Question 1.2, we only need to consider
the case where Γ is connected. In fact, if Γ is not connected, then A(Γ) is the
free product of the right-angled Artin groups on the components of Γ. Since
hyperbolic surface groups are indecomposable, the right-angled Artin group on
one of the components of Γ contains a hyperbolic surface group, if A(Γ) does.
Thus we assume that the graph Γ is connected throughout the paper. This
paper is an improved version of a part of the doctoral dissertation of the first
author.

2. Basic cutting lemma

Let S be a compact orientable surface and ∂S be its boundary (maybe
empty). Recall that a properly embedded arc is the image of a closed interval
into S by an embedding such that the image of the two endpoints of the interval
are in ∂S. Let α be a simple closed curve or a properly embedded arc. A
transverse orientation of α on S is a choice of one of two components of the
total space of the normal bundle of α in S. A transverse orientation of α
on S can be simply indicated by a short arrow crossing α from one side to
the other in a tubular neighborhood of α. Transversely oriented simple closed
curves, transversely oriented properly embedded arcs, and transversely oriented
boundary components of S are called collectively hypercurves in S ([5]). Note
that if S is closed, then all hypercurves are transversely oriented simple closed
curves.

For two properly embedded arcs α and β, we say α and β are homotopic if
α and β are homotopic in the usual sense by a homotopy leaving the endpoints
of α and β on the boundary of S (but not requiring the endpoints to be fixed).
We say an arc (or a curve) α is homotopic into ∂S if there is an arc (or a
curve) β in ∂S (freely if α is a curve) homotopic to α. Two hypercurves on
a surface S are said to intersect transversely, if they meet in a discrete set of
points and for each intersection point, there is an open neighborhood of the
intersection point in which they intersect in the neighborhood after any small
perturbation. For any set of hypercurves, we can homotope them so that they
intersect transversely.

In [5], for a finite set V , Crisp and Wiest introduced a V -dissection on a
compact (orientable or non-orientable) surface (see [4, 5, 9, 10]). Let V be a
finite set. A V -dissection on S is a set H of hypercurves satisfying:
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(1) Any two hypercurves of H either are disjoint or intersect transversely, and
for any intersection point of two hypercurves, no other hypercurve than
the two hypercurves passes through the intersection point.

(2) Each hypercurve in H is transversely oriented and labeled with an element
of V in such a way that any two hypercurves of the same label do not
intersect.

We will call hypercurves of a dissection on S dissection curves. A dissection
curve labeled with s is called a s-curve, while s is called the label of the dissec-
tion curve. Likewise, for a subset A of V , a dissection curve is called a A-curve,
if the dissection curve is labeled with an element of A. Let γ be a path in S.
The content of γ is the set of labels of dissection curves which intersect γ and
denoted by cont(γ). For a subsurface S′ of S, the content of S′ is the set of
labels of dissection curves which intersect S′ and denoted by cont(S′).

Let Γ be a finite simple graph. For convenience, a V (Γ)-dissection on S will
also be called as a Γ-dissection on S. Let H be a Γ-dissection on S. For a
loop γ : [0, 1] −→ S based at a point p ∈ S, homotope γ so that γ intersect
dissection curves transversely if they meet. We can define a word wγ to be the
word in the letters from {v, v−1 | v ∈ V (Γ)} obtained by reading off the labels
of the hypercurves traversed by γ, where the sign of each letter is positive
if γ traverses with the transverse orientation of the dissection curve and the
sign is negative, otherwise. We call the word wγ the label-reading of γ with
respect to the dissection. Since for any other γ′ homotopic to γ, if γ′ meets
dissection curves transversely, two words wγ and w′

γ are equivalent in the free
group generated by V (Γ), we get a well-defined map ψ : π1(S, p) −→ A(Γ)
defined by ψ([γ]) = wγ .

For two loops l1 and l2 with corresponding label-readings w1 and w2, the
label-reading of the product of two paths l1 ∗ l2 is the concatenation w1w2 of
the two words w1 and w2, thereby the map ψ is a homomorphism. We call
ψ : π1(S, p) −→ A(Γ) the homomorphism induced by a Γ-dissection on S. It is
known that the converse also holds.

Proposition 2.1 ([5, 9, 10]). Let S be a compact orientable surface (with or

without boundary) and Γ be a graph. For any homomorphism ψ : π1(S, p) −→
A(Γ), there is a Γ-dissection on S inducing ψ.

We say two maps φ, ψ : π1(S) −→ A(Γ) are equivalent if φ = i ◦ ψ for some
inner-automorphism i : A(Γ) −→ A(Γ). We say two dissections ∆ and ∆′ on
S are equivalent if they induce equivalent homomorphisms π1(S, p) −→ A(Γ).
Note that for a fixed dissection, a base change does not alter the equivalence
class of the corresponding homomorphism. Certain simplifications of a given
dissection on S can be made without changing the equivalence class of the
dissection as seen in the next proposition.

We say that two hypercurves α1, α2 in S bound a bigon if there are subpaths
α′
1 of α1 and α′

2 of α2 such that α′
1 ∪ α

′
2 is the boundary of a disk on S.
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Proposition 2.2 ([5, 9, 10]). Let ∆ be a Γ-dissection on a compact orientable

surface S with or without boundary. Let ∆′ be a Γ-dissection on S obtained

from ∆ by the following simplifications:

(1) ∆′ is obtained by removing null-homotopic dissection curves in ∆.

(2) ∆′ is obtained by removing properly embedded arcs in ∆ that are ho-

motopic into ∂S.
(3) Suppose that two dissection curves in ∆ bound a bigon. By taking an

innermost one, we may assume that the two curves do not touch the

interior of the bigon. To get ∆′, we homotope the two curves in a neigh-

borhood of the bigon so that the bigon is removed (Figure 1). Through

the homotopy, the number of intersection points with other dissection

curves in ∆, labels and transverse orientations are not changed, while

the number of intersection points of the two curves is reduced by two.

Then ∆ and ∆′ are equivalent.
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Figure 1. Removing a bigon

From now on, if there is no ambiguity, then we will call both simple closed
curves and properly embedded arcs on a compact orientable surface as curves.

Two curves in a compact orientable surface are said to intersect minimally if
either they does not intersect or they intersect transversely and do not bound
a bigon. For curves α1 and α2 on a compact orientable surface, the inter-

section number i(α1, α2) of α1 and α2 is defined as min{|α′
1 ∩ α′

2| ∈ N |
α′
i is homotopic to αi for each i = 1, 2} (if αi is a properly embedded arc,

then the homotopy is relative to ∂S). It is known that two hypercurves α1 and
α2 intersect minimally if and only if |α1 ∩ α2| = i(α1, α2) ([2]).

Let α be a curve in a compact orientable surface S. Let T be a compact
subsurface of S. We say that α intersects ∂T minimally if for any component
∂iT of the boundary ∂T of T , α intersects ∂iT minimally.

For a finite collection of curves in a compact surface, we can homotope them
so that any two curves in the set intersect minimally if they intersect (repeat
the process in the Figure 1 successively). From now on, we assume that any
dissection ∆ on a compact surface S satisfies the following (1), (2), and (3):
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(1) There is no null-homotopic dissection curve in ∆.
(2) There is no properly embedded arc in ∆ that is homotopic into ∂S.
(3) There is no bigon formed by dissection curves, that is, the dissection

curves intersect minimally.

Now we prove a part of the basic cutting lemma in detail while Crisp, Sageev,
and Sapir only sketched a proof of the lemma ([4]). For a set B of curves in
a compact surface S, each element of B will be called a B-curve and S − B
will denote S − ∪γ∈Bγ. All curves are assumed to be homotoped to intersect
minimally.

Suppose a graph Γ is a union of connected induced subgraphs Γ1, . . . ,Γn.
Then Γ is written as Γ = Γ1 ∪L · · · ∪L Γn if L is an induced (not necessarily
connected) subgraph of Γ with L = Γi ∩ Γj for any distinct i, j = 1, . . . , n.

Lemma 2.3 (basic cutting lemma ([4])). Suppose that Γ = Γ1∪L · · ·∪LΓn (n ≥
2), and S is a compact orientable surface equipped with a Γ-dissection ∆. Then

there exist collections B1, . . . , Bn of essential simple closed curves and properly

embedded arcs on S as follows:

(1) All of the curves in B1 ∪ · · · ∪Bn are mutually disjoint.

(2) Each γ ∈ Bi is isotopic to a composition of subarcs of (Γi −L)-curves,
where the isotopies are relative to ∂S in the case that γ is a properly

embedded arc.

(3) Every closed curve on S that intersects a curve from Bi also intersects

a (Γi − L)-curve from ∆.

(4) If S is a closed hyperbolic surface, then one of the components of S −
(B1 ∪ · · · ∪Bn) has non-abelian fundamental group.

(5) For each γ ∈ Bi, cont(γ) ⊂ L.
(6) If S′ is a connected component of S − (B1 ∪ · · · ∪ Bn), then either

cont(S′) ⊂ Γi for some i = 1, . . . , n or cont(S′) ⊂ L.

Proof. Set Γ′
i = Γi − L for each i = 1, . . . , n, and let Ω be the union of all Γ′

i-
curves on S. Note that Ω is not necessarily a simple graph. Take a closed reg-
ular neighborhood N(Ω) of Ω. To N(Ω), attach every component of S −N(Ω)
which is a closed disk whose boundary does not share any arcs with ∂S to ob-

tain a compact surface Ŝ. Considering the structure of Γ, it is easy to observe
that

(i) for each attaching disk, there is only one i (i = 1, . . . , n) such that the
attaching disk is surrounded by Γ′

i-curves only in S;
(ii) for each component of N(Ω), there is only one i such that the component

contains Γ′
i-curves only, and so it is the case for each component of Ŝ;

(iii) pasting closed disks of S −N(Ω) to N(Ω) does not change the number

of components, and so the number of components of Ŝ is equal to the
number of components of N(Ω).
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In view of (ii), N(Ω) has more than one components, as each Γ′
i is not empty.

By (iii), Ŝ is a disconnected compact surface with non-empty boundary. Since

S is connected, Ŝ  S.

For each i = 1, . . . , n, let Wi be the union of all the components of Ŝ con-
taining a Γ′

i-curve. Consider the collection Bi of the simple closed curves and
properly embedded arcs in S obtained from ∂Wi by removing the interior of
Wi ∩ ∂S. Note that Wi ∩ ∂S is the union of a finite number of subarcs of
∂S. Since Γ′

i 6= ∅, Wi 6= ∅, and so Wi is a compact orientable surface with
non-empty boundary. It follows that Bi 6= ∅, as ∂Wi is not contained in ∂S.
It is easy to see that B = B1 ∪ · · · ∪ Bn is the collection of all the mutually
disjoint simple closed curves and properly embedded arcs in S obtained from

∂Ŝ by removing the interior of Ŝ ∩ ∂S.
Now (1), (2) and (3) are obvious by the construction of Bi-curves.
Suppose that S is a closed surface. Then all dissection curves are simple

closed curves. Note that S− (B1∪· · ·∪Bn) does not have any disk component,
since every disk component S−N(Ω) is removed by attaching it to N(Ω) in the
process of constructing B-curves. If all the components of S − (B1 ∪ · · · ∪Bn)
have abelian fundamental groups, they are annuli. Since an annulus attached
to another annulus along one of its boundary circles becomes an annulus, S
must be a torus in this case, which is absurd. Therefore one of the components
of S − (B1 ∪ · · · ∪Bn) has non-abelian fundamental group. This proves (4).

Let γ be a Bi-curve. Suppose a dissection curve α meets γ. The construction
of B-curves guarantees that α can not be a Γ′

k-curve for any k = 1, . . . , n. It
follows that α must be L-curve. This proves (5).

Let Y be the closure of a component of S− (B1∪· · ·∪Bn). Then Y is either

a component of Ŝ or the closure of a component of S − Ŝ. If Y1 is the closure

of a component of S − Ŝ, then there is no Γ′
i-curve in Y1 for any i = 1, . . . , n,

which means Y1 meets L-curves only. Thus cont(Y1) ⊂ L. Now, let Y2 be a

component of Ŝ. Then Y2 contains a Γ′
i-curve for some i. It turns out that

cont(Y2) ⊂ Γi. In fact, Y2 touches no Γ′
j-curve for j 6= i, as Γ′

j-curve cannot
intersect Γ′

i-curve. Thus Y2 touches Γi-curves only. This proves (6). �

3. Hyperbolic surface subgroups of right-angled Artin groups on

proper subgraphs

Crisp, Sageev, and Sapir obtained the following proposition in an effort to
answer Question 1.2. Recall that for an induced subgraph J of a graph K, the
central HNN-extension K∗J of K over J is obtained by adding a single vertex
not belonging to K, and joining the new vertex to all the vertices of J by edges.

Proposition 3.1 ([4]). Let Γ be the amalgamation of two graphs Γ1 and Γ2

along a complete graph L. If A(Γ) contains a hyperbolic surface subgroup, then

A(Γ1∗L) or A(Γ2∗L) contains a hyperbolic surface subgroup.
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However, it is still not known whether either A(Γ1) or A(Γ2) contains a
hyperbolic surface group. The easiest case to handle Question 1.2 is obviously
the case where L consists of only one vertex. It is known that hyperbolic surface
groups do not contain the torus group. Thus two simple closed curves in a
closed hyperbolic surface are homotopic if the elements represented by them in
the fundamental group of the hyperbolic surface commutes. This enables us to
homotope the curves not to intersect. This observation leads one to a positive
answer to Question 1.2 in the case.

Lemma 3.2. Suppose that Γ is a connected graph with Γ = Γ1 ∪Γ1∩Γ2
Γ2. Let

∆ be a Γ-dissection on a closed surface S other than the sphere inducing a

monomorphism φ : π1(S) −→ A(Γ). If ∆ has no Γ1 ∩ Γ2-curves, then π1(S)
embeds into either A(Γ1) or A(Γ2) by φ.

Proof. Let Γ′
i = Γ1 − (Γ1 ∩ Γ2) for i = 1, 2. Since ∆ has no Γ1 ∩ Γ2-curves,

π1(S) embeds into the subgroup A(Γ′
1) ∗ A(Γ

′
2) of A(Γ) by φ. Note that if

the fundamental group of a closed surface is a subgroup of a free product of
two non-trivial groups, then the group is a subgroup of one of the two factors.
Therefore the conclusion follows. �

Theorem 3.3. If Γ is the graph amalgamation of two graphs Γ1 and Γ2 along

a vertex and if A(Γ) contains a hyperbolic surface group, then A(Γ1) or A(Γ2)
contains a hyperbolic surface group.

Proof. Let S be a closed hyperbolic surface and φ : π1(S) −→ A(Γ) is a
monomorphism. Let ∆ be a Γ-dissection inducing φ and Γ1 ∩ Γ2 = {a}. If
∆ has only either Γ1-curves or Γ2-curves, then the conclusion follows. Thus we
may assume that ∆ has both (Γ1 − {a})-curves and (Γ2 − {a})-curves. By the
previous lemma, we only need to show that ∆ does not have a-curves.

Suppose ∆ has a a-curve. Consider B1-curves and B2-curves as in the basic
cutting lemma. Let T be a component of S − (B1 ∪ B2) (The component is
not an open disk). Then T ⊂ S is a connected compact surface with non-
empty boundary. Choose a boundary component ∂1T of T . By the basic
cutting lemma, ∂1T is a B1-curve or a B2-curve. By (5) in the basic cutting
lemma, cont(∂1T ) ⊂ {a}. Since φ is injective and ∂1T is essential, cont(∂1T ) =
{a}. Thus there is a dissection curve ξ with label a which intersects ∂1T
with positive intersection number. Then cont(ξ) ⊂ link(a), and so φ([ξ]) and
φ([∂1T ]) commutes in A(Γ) where [ξ], [∂1T ] ∈ π1(S). Since φ is injective,
[ξ] and [∂1T ] commutes in π1(S). Since S is a closed orientable hyperbolic
surface, ξ and ∂1T with proper choice of orientations are homotopic, and so
their intersection number is 0. Then ξ can be homotoped so that ξ ∩ ∂1T = ∅.
This is a contradiction. �

If we mimic the proof of Theorem 3.3, we can prove the following theorem.

Theorem 3.4. Let Γ be the amalgamation of two graphs Γ1 and Γ2 along a

graph L, Suppose that link(a) = link(b) for any pair of vertices a, b of L. If
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A(Γ) contains a hyperbolic surface group, then either A(Γ1) or A(Γ2) contains
a hyperbolic surface group.

Let Γ be a graph which contains two vertices a and b with the same link.
Suppose that Γ−{a, b} is not connected. By applying Theorem 3.4 in the case
when L = {a, b}, it can be shown that if A(Γ) contains a hyperbolic surface
group, then there is a component K of Γ − {a, b} such that the right-angled
Artin group on the induced subgraph K ∪ {a, b} of Γ contains a hyperbolic
surface group.

In [1], Bell obtained a lemma which gives the underlying graph of the right-
angled Artin group kerφ, where φ is an epimorphism from a certain right-
angled group to a finite cyclic group. This lemma provides us a useful tool to
handle Question 1.1. Recall that the star of v, denoted by star(v), is the set
{v} ∪ link(v).

Lemma 3.5 (Bell’s lemma [1]). Suppose A(Γ) is a right-angled Artin group,

and let n be a positive integer. Choose a vertex z ∈ V (Γ), and define φ :
A(Γ) −→ 〈x | xn = 1〉 by φ(z) = x and φ(v) = 1 if v 6= z. Then kerφ is the

right-angled Artin group whose defining graph Γ′ is obtained by gluing n copies

of Γ − {z} to star(z) along link(z). Moreover, the vertices of Γ′ naturally

correspond to the following generating set:

{zn} ∪ link(z) ∪ {u | u /∈ star(z)} ∪ {zuz−1 | u /∈ star(z)} ∪ · · ·

∪ {zn−1uz1−n | u /∈ star(z)}.

Theorem 3.6. Let a be a vertex of a graph Γ. Suppose there are two vertices

b and v other than a with link(a) = link(b) ⊂ link(v). Then the right-angled

Artin group A(Γ) embeds into a subgroup of A(Γ−{a}). Therefore, if the right-

angled Artin group A(Γ) contains a hyperbolic surface subgroup, then A(Γ−{a})
contains a hyperbolic surface subgroup.

Proof. Let X be the graph Γ−{a}. Then by applying Bell’s lemma when n = 2
to X , we see that if the graph X ′ is obtained by gluing two copies of X−{v} to
star(v) along link(v), A(X ′) embeds into A(X). A copy of X − {v} with b in
the other copy together forms an induced subgraph of X ′ which is isomorphic
to Γ, as b in the other copy plays the same role as a in Γ. The conclusion
follows. �

Theorem 3.7. Let Γ be a graph which contains two vertices a and b with

the same link, where the number of vertices of the link ≤ 2. If the right-

angled Artin group A(Γ) contains a hyperbolic surface subgroup, then A(Γ−{a})
contains a hyperbolic surface subgroup. Consequently, being a group isomorphic

to A(Γ− {a}), A(Γ− {b}) also contains a hyperbolic surface group.

Proof. Let L = link(a) = link(b). Then Γ is an amalgamation of an induced
(maybe disconnected) subgraph Γ1 = Γ − {a, b} and the induced subgraph
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generated by L ∪ {a, b} along L. In the case where L is one vertex, then the
conclusion follows by Theorem 3.3.

Now consider the case where the number of vertices of L is 2. Let L =
{p, q}. First, assume that L is complete. The induced subgraph 〈a, b, p, q〉∗L
of Γ generated by L ∪ {a, b} is chordal, the right-angled Artin group defined
on the graph does not contain any hyperbolic surface subgroup (Figure 2).
By Proposition 3.1, the right-angled Artin group defined on the graph Γ1∗L
contains a hyperbolic surface subgroup. Since Γ1∗L is isomorphic to Γ − {a},
the conclusion follows.
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Figure 2. 〈a, b〉∗L

Suppose that L is discrete. Then the distance d(p, q) between p and q in
Γ1 is ≥ 2. If p and q are disconnected in Γ1, then by applying Theorem 3.3
twice, we see that the hyperbolic surface subgroup of A(Γ) lies in A(Γ1). If
d(p, q) = 2, then there is a vertex v in Γ1 with link(a) = link(b) ⊂ link(v).
By Theorem 3.6, A(Γ − {a}) contains a hyperbolic surface. If d(p, q) ≥ 3,
then Γ−{a} has a long cycle which has p, b, q as its successive vertices. Hence
A(Γ− {a}) contains a hyperbolic surface group. �

The complement graph Γ of a graph Γ is the graph such that its vertex set
is the vertex set of Γ and for each pair of vertices a, b in Γ, there is an edge
having a, b as endpoints in Γ if there is no edge having a, b as endpoints in Γ.

The join L1 ⋆ · · ·⋆Ln of graphs L1, . . . , Ln is defined as L1 ∐ · · · ∐ Ln where
∐ denotes the disjoint union.

Let Γ = Γ1∪L · · ·∪L Γn, where L is a join L1 ⋆ · · ·⋆Ln of a join of subgraphs
L1, . . . , Ln. Let Γ′

i = Γi − L. Suppose for any v ∈ V (Γ) − V (Γ′
i) which is

adjoint to a vertex in V (Γ′
i), v is a vertex of Li. Then we say that Γ is almost

a join of Γ1, . . . ,Γn over L1, . . . , Ln.

Proposition 3.8 ([4]). Suppose that Γ is almost a join of subgraphs Γ1, . . . ,Γn

over L1, . . . , Ln (n ≥ 2). Let ∆ be a faithful Γ-dissection diagram on a compact

hyperbolic surface S (with or without boundary) such that cont(∂S) is in L.
Then cont(S) ⊂ Γi for some i.
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This proposition implies that if Γ is almost a join of subgraphs Γ1, . . . ,Γn

over L1, . . . , Ln(n ≥ 2) and if S is a closed hyperbolic surface and there is a
monomorphism φ from π1(S) to A(Γ), then actually the map φ is a monomor-
phism from π1(S) to A(Γi) for some i = 1, 2, . . .. A vertex subset X of a graph
Γ is called separating if Γ−X is disconnected.

Proposition 3.9 ([4]). Suppose that a connected graph Γ contains no long

cycle and suppose that {a, b} is a separating pair of non-adjacent vertices in Γ
such that Γ = Γ1 ∪{a,b} Γ2 for some two proper induced subgraphs Γ1,Γ2. If

A(Γ) contains a hyperbolic surface subgroup, then A(Γ1) contains a hyperbolic

surface subgroup.

Theorem 3.10. Let Γ be a graph having two vertices a, b with the same link,

where the link has 3 vertices and is discrete. If the right-angled Artin group

A(Γ) contains a hyperbolic surface subgroup, then A(Γ − {a}) contains a hy-

perbolic surface subgroup.

Proof. Let L = {p1, p2, p3} be the link of both a and b. Then Γ is the amalga-
mation of an induced (maybe disconnected) subgraph Γ1 = Γ− {a, b} and the
induced subgraph generated by L∪ {a, b} along L. For i, j with 1 ≤ i < j ≤ 3,
we will call a vertex adjacent to both pi and pj a vertex of type pij . For
example, z12, z23 z13 in Figure 4 are vertices of type p12, p23, p13, respectively.
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Figure 3. p1 is not connected to p2, p3 by any edge path in Γ1

First, consider the case where not all of the three points p1, p2, p3 are in the
same component in Γ1. If any two of p1, p2, p3 are not in the same component,
then by applying Theorem 3.3 repeatedly, it can be easily shown that the
right-angled Artin group defined on one of the components of Γ1 contains a
hyperbolic surface group, as Theorem 3.4 assures that the right-angled Artin
group on the induced subgraph generated by p1, p2, p3, a, b can not contain a
hyperbolic surface group. So, A(Γ− {a}) contains a hyperbolic surface group.
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Thus we may assume that only two of p1, p2, p3 are in the same component
in Γ1. Suppose p2 and p3 are in the same component for convenience. If
the distance between p2 and p3 is larger than 2 in Γ1, then there is a long
cycle. So, we only need to deal with the case of d(p2, p3) = 2, where there is a
vertex z23 of type p23. Then Γ has the induced subgraph as in Figure 3. Note
that Γ is almost a join of two subgraphs K1 and K2 over the graphs 〈p2, p3〉
and 〈a, b〉 where K1 contains {z23} and K2 contains {p1}. By Proposition
3.8, either A(K1) or A(K2) contains a hyperbolic surface group. If A(K1)
contains a hyperbolic surface subgroup, then by Theorem 3.7, A(K1 − {a})
contains a hyperbolic surface subgroup. If A(K2) contains a hyperbolic surface
subgroup, then by Theorem 3.3, A(K2 − {p2, p3, a, b}) contains a hyperbolic
surface subgroup as the right-angled Artin group on the induced subgraph
generated by p1, p2, p3, a, b does not contain a hyperbolic surface group. Hence
A(Γ− {a}) contains a hyperbolic surface group.
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Figure 4. d(p1, p2) = d(p2, p3) = d(p1, p3) = 2 in Γ1

Next, we need to deal with the case where p1, p2, p3 are all in the same
component in Γ1. If there is a vertex v which is of two different pij types, then
the vertex v belongs to any of all three types. Thus link(a) = link(b) ⊂ link(v).
By Theorem 3.6, Γ − {a} contains a hyperbolic surface group. Therefore we
may assume that there is no vertex of two different pij types. First, we consider
the case where d(p1, p2) = d(p2, p3) = d(p3, p1) = 2 in Γ1. If any pair of vertices
of different pij types are not connected in Γ1 −{p1, p2, p3}, there is an induced
6-cycle in Γ1. For example, in Figure 4, p1z12p2z23p3z31p1 is an induced 6-cycle,
where z12, z23 z13 are vertices of types p12, p23, p13, respectively. It follows
that Γ− {a} contains an induced 6-cycle.
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Now suppose there is a pair of vertices of different pij types which is con-
nected in Γ1 −{p1, p2, p3}. Without loss of generality, we assume that a vertex
z12 of type p12 is connected to a vertex of different pij type by an edge path
γ (Figure 5). By deleting redundant vertices of p12 type at the initial part of
the edge path γ, we may assume that the second vertex among the vertices of
pij types on γ is of different type, say p13 type. Let z13 be the second vertex.
If each vertex on γ except z12 and z13 is not adjacent to any of p1, p2, p3, then
z12 · · · z13p3bp2z12 is an induced long cycle, as we can see in Figure 4. Suppose
among the vertices on γ, there is a vertex which is adjacent to only one of p2
and p3. Choose the nearest one w to z12 among such vertices. If w is adjacent
to p3, then z12 · · ·wp3bp2z12 is an induced long cycle. If w is adjacent to p2,
then choose the nearest one w′ among the vertices on γ which is adjacent to
p3. By eliminating redundant vertices adjacent to p2, we may assume that on
γ, there is no vertex adjacent to only one of p2 and p3 between w and w′. In
this case, w · · ·w′p3bp2w is an induced long cycle.
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Figure 5. γ with vertices adjacent to only one of p2 and p3

Now, suppose that d(pi, pj) ≥ 3 in Γ1 for some pi and pj. Assume without
loss of generality that d(p1, p3) ≥ 3 in Γ1. If there is an edge path from p1
to p3 realizing the distance d(p1, p3) in Γ1 and not passing through p2, then
the edge path from p1 to p3 and the edge path p3bp1 forms an induced long
cycle together in Γ − {a}. Thus we may assume that for any edge path from
p1 to p3 realizing the distance in Γ1, the edge path passes through p2. If either
d(p1, p2) or d(p2, p3) is larger than 2 in Γ1, then it is easy to see that there is
an induced long cycle in Γ− {a}. For example, if d(p1, p2) > 2, the edge path
realizing the distance d(p1, p2) and the edge path p2bp1 forms an induced long
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Figure 6. d(p1, p2) = 2, d(p2, p3) = 2, d(p1, p3) = 4 in Γ1

cycle together in Γ − {a}. So, we only need to consider the case where Γ has
an induced subgraph as in Figure 6.

Note that in Figure 6, {p1, p2} and {p2, p3} are separating pairs. If Γ− {a}
contains a long cycle, it is done. Thus we may assume that Γ − {a} does
not have an induced long cycle. Then Γ should not contain an induced long
cycle. In fact, if Γ contains an induced long cycle C, then C contains a. Since
link(a) = link(b), C can not contain both a and b, and so C does not pass
through b. If we replace a with b in C, we get another induced long cycle, which
is in Γ − {a}. This is a contradiction. Thus Γ does not contain an induced
long cycle. Since {p1, p2} and {p2, p3} are separating pairs in Γ, by applying
Proposition 3.9 twice, we see that A(Γ − {a, b}) contains a hyperbolic surface
subgroup, as the right-angled Artin group on the induced subgraph generated
by p1, p2, p3, a, b does not contain a hyperbolic surface group. �

Corollary 3.11. Let Γ be a graph having two vertices a, b with the same link

where the number of vertices of the link is ≤ 4 and the link is discrete. Suppose

that Γ − {a, b} is disconnected. If the right-angled Artin group A(Γ) contains

a hyperbolic surface subgroup, then A(Γ − {a}) contains a hyperbolic surface

subgroup.

Proof. Let L = link(a) = link(b) = {p1, p2, p3, p4}. Since Γ − {a, b} is dis-
connected, Γ can be considered as the amalgamation of two graphs Γ1 and
Γ2 along {a, b}. Obviously, not all of the vertices of L belong to the same
Γi(i = 1, 2) (Figure 7). Theorem 3.4 implies that either A(Γ1) or A(Γ2) con-
tains a hyperbolic surface group. Since link(a)(= link(b)) in both Γ1 and Γ2
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Figure 7. pi and pj are contained in different components of Γ1

contains ≤ 3 vertices, we can apply Theorem 3.10 and Theorem 3.7 to derive
the conclusion. �

The conclusion of Corollary 3.11 holds for a wider class of graphs. In fact,
if we remove the restriction on the number of elements in link(a) = link(b)
and replace the condition that Γ − {a, b} is disconnected with the condition
that each component of Γ− {a, b} contains less than 4 points of link(a), then
the conclusion of Corollary 3.11 holds. In other words, let graph Γ be a graph
having two vertices a, b with the same link. Suppose that the link is discrete
and each component of Γ − {a, b} contains less than 4 points of link(a). If
A(Γ) contains a hyperbolic surface group, then A(Γ − {a}) does so. A slight
modification of the proof of Corollary 3.11 enables us to prove this.
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