• Title/Summary/Keyword: ride

Search Result 950, Processing Time 0.023 seconds

A Study on the Body Attachment Stiffness for the Road Noise

  • Kim Ki-Chang;Kim Chan-Mook
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1304-1312
    • /
    • 2005
  • The ride and noise characteristics of a vehicle are significantly affected by the vibration transferred to the body through the chassis mounting points in the engine and suspension. It is known that body attachment stiffness is an important factor of idle noise and road noise for NVH performance improvement. The body attachment stiffness serves as a route design aimed at isolating the vibration generated inside the car due to the exciting force of the engine or road. The test result of the body attachment stiffness is shown in the FRF curve data; the stiffness level and sensitive frequency band are recorded by the data distribution. The stiffness data is used for analyzing the parts that fail to meet the target stiffness at a pertinent frequency band. The analysis shows that the target frequency band is between 200 and 500 Hz. As a result of the comparison in a mounted suspension, the analysis data is comparable to the test data. From these results, there is a general agreement between the predicted and measured responses. This procedure makes it possible to find the weak points before a proto car is produced, and to suggest proper design guidelines in order to improve the stiffness of the body structure.

Analysis of Vehicle Limit Considering the Dynamic Behavior for an Urban Train (도시철도 차량의 동적거동을 고려한 차량한계 해석)

  • 박찬경;김영국;배대성
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.7
    • /
    • pp.527-533
    • /
    • 2002
  • A railway vehicle should be satisfied with the safety criteria and ride comfort of passengers. A bogie of railway vehicle Is composed of many suspension components, such as springs, dampers and etc.. that have an influence on the dynamic behavior of the train wish the wheel/rail profiles and track geometries. Therefore, it Is necessary for engineers to check the Interference between vehicle limit and construction limit with considering the vehicle's behavior, because when the vehicle is running on curved track, it should be have enough clearance from infrastructure for safely, spacially In a subway system. This paper explains the effective method of analysis for vehicle limit considering the vehicle dynamic behavior and reviews the problem of vehicle limit for the Korean Standard Urban Train. The results show that the vehicle limit is over the construction limit when the Korean Standard Urban Train runs on the curved track with 180 m radius of curve.

Development of Onshore Offshore Tower Elevator with load distribution endless winder and integrated control panel (하중 분산형 엔드리스 와인더와 통합형 제어반을 적용한 육상 해상 풍력타워 승강기 개발)

  • Lee, Sang-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.711-719
    • /
    • 2019
  • At present, wind power is the fastest growing technology in the world. The domestic market depends heavily on imports for wind tower lift. so it manage through the overseas maker. The lift manufacture, establishment and maintenance utility is increasing, localization development of one wind tower lift is necessary with domestic fundamental base technique. In this paper, we will study the components necessary for the development of onshore offshore wind tower elevators, which are currently dependent on total imports, in line with the high growth of the wind market and the enlargement of the wind power generators. First of all, endless winders and cabins, which are the core components of the offshore wind tower lift, were examined for the components that affect the structural safety. Structural analysis was performed on Sheave, which is responsible for most of the lift lifting loads, and Block Stop, a safety device that prevents the cabin from falling in an emergency. The structural suitability was evaluated by comparing with the safety factor. In addition, the on-board control panel combines the control panel of the elevator and the drive motor driving the endless winder for efficient control of the offshore wind tower lift. The addition of features improves ride comfort at departure.

Effect of Heat Treatment on Fatigue Life of the Power Train Part (파워트레인 부품의 피로수명에 미치는 열처리의 영향)

  • Hur, M.D.;Shim, T.Y.;Lee, K.O.;Yu, G.B.;Kang, S.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.4
    • /
    • pp.203-209
    • /
    • 2009
  • Dual mass flywheel is the newly developed flywheel system which reduces the noise and vibration and make a better and comfortable ride of cars by adding inertia mass and damping device. However, verification of performance for this system should be carried out since this system is under developing status in our country. Especially, the durability for each part of this system should be guaranteed. Durable properties of driver plate which is the key component of dual mass flywheel were first investigated both in the raw (SCM435 in JIS) and heat-treated material. In addition, fatigue life analysis of driver plate was preformed in the real condition and the results were verified by comparison with the results of rig test.

Aerodynamic performance of a novel wind barrier for train-bridge system

  • He, Xuhui;Shi, Kang;Wu, Teng;Zou, Yunfeng;Wang, Hanfeng;Qin, Hongxi
    • Wind and Structures
    • /
    • v.23 no.3
    • /
    • pp.171-189
    • /
    • 2016
  • An adjustable, louver-type wind barrier was introduced in this study for improving the running safety and ride comfort of train on the bridge under the undesirable wind environment. The aerodynamic characteristics of both train and bridge due to this novel wind barrier was systematically investigated based on the wind tunnel tests. It is suggested that rotation angles of the adjustable blade of the louver-type wind barrier should be controlled within $90^{\circ}$ to achieve an effective solution in terms of the overall aerodynamic performance of the train. Compared to the traditional grid-type wind barrier, the louver-type wind barrier generally presents better aerodynamic performance. Specifically, the larger decrease of the lift force and overturn moment of the train and the smaller increase of the drag force and torsional moment of the bridge resulting from the louver-type wind barrier were highlighted. Finally, the computational fluid dynamics (CFD) technique was applied to explore the underlying mechanism of aerodynamic control using the proposed wind barrier.

Making of Foldable Electronic Wheelchair Body for the Disabled and Their Guardians (장애인과 보호자를 위한 접이식 전동휠체어 바디 제작)

  • Jung, H.W.;Yoo, J.J.;Lee, D.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.8 no.2
    • /
    • pp.89-94
    • /
    • 2014
  • This research notes dramatic increase of wheelchair usage along with rapidly aging population and handicapped people in Korea. Differentiated from existing electronic wheelchairs, we have invented an electronic wheelchair that is collapsible even when the battery is installed and a guardian can ride along with a patient. It is also easy to put in a small space such as car trunks. Additionally, we have improved stoic design to be preferable for patients. The model ensures there's neither abrupt acceleration nor sudden stop and, lastly, is much cheaper than other imported models.

  • PDF

Development of a Dynamic Simulation Program for Railway Vehicles (철도차량을 위한 동역학 해석 프로그램 개발)

  • Cho, Jae-Ik;Park, Tae-Won;Yoon, Ji-Won;Kim, Young-Guk
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.473-479
    • /
    • 2009
  • Dynamic analysis is necessary for the High-Speed Railway vehicle which aims to run on max 400km/h. Especially, dynamic simulation using CAE(Computer Aided Engineering) can help to reduce the time of development of the High-Speed Railway vehicles. Also, it helps to reduce prices and improve the quality such as safety, stability and ride. There are many dynamic software for a railway vehicle, such as Vampire and ADAMS-Rail. There are limitations for each software and difficulties to analyze overall dynamics for entire railway system. To overcome these limitations, in this study, a program which can simulate entire railway vehicles was developed. This program is easy to use because it was developed using C++, which is object-oriented programming language. In addition, the basic platform for the development of dynamic solver is prepared using the nodal, modal coordinate system with a wheel-rail contact module. Rigid, flexible and large deformable body systems can be modeled by a user according to the characteristic of a desired system. Its reliability is verified by comparison with a commercial analysis program.

  • PDF

Characteristics of Wheel Tread for Urban Train Based on Contact Positions (접촉위치에 따른 도시철도 차륜 답면의 특성 변화)

  • Kwon, Seok-Jin;Noh, Hang-Nak;Nam, Yoon-Su;Seo, Jung-Won;Lee, Dong-Hyung
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.6
    • /
    • pp.524-529
    • /
    • 2008
  • The damaged wheel in railway vehicle would cause a poor ride comfort, a rise in the maintenance cost and even fracture of the wheel, which then leads to a tremendous social and economical cost. The defect initiation and crack propagation in wheel may result in the damage of the railway vehicle or derailment. Therefore, it is important to evaluate the characteristics of the wheel tread. In the present paper, the characteristics of wheel tread based on contact positions, running distance and brake pattern are evaluated. The result shows that the damaged wheel tread is remarkably depended on the contact positions between wheel and rail.

The Parameter Study of Serviceability Review of End Track on Railway Bridge installed Concrete Slab Track (콘크리트궤도 부설 교량의 단부 사용성 검토를 위한 매개변수 연구)

  • Sung, Deok-Yong;Kim, Young-Ha;Park, Yong-Gul;Kim, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.117-124
    • /
    • 2008
  • Construction of concrete slab track is trending to increase gradually in national and international for reduction in track maintenance cost and secure of ride comfort. However, in case of railway bridge installed concrete slab track, the serviceability review of end deck should be performed for reducing the maintenance cost of track. The serviceability review of track contains that the compression force which is occurred on fastener of end bridge should be smaller than the compression force causing the deformation limit of elastic pad and the uplift force which is occurred on fastener of end abutment should be smaller than initial fastening force. Therefore, this study calculated the deflection and end rotation of the railway bridge according to the span length and stiffness of railway bridge and estimated the compression force and uplift force which are occurred on the track of end bridge using the finite element method. This study indicated the several diagrams that are contained the correlation between the behaviour of the track and the behaviour of the railway bridge. As a result, to reduce the end rotation of the railway bridge is very efficient to increase the height of railway deck.

  • PDF

The Effect of KTX Vehicle Size Adjustment on High-Speed Railway Bridge Vibration : Numerical Study (수치해석을 통한 KTX 객차 길이 조정이 고속철도교량의 동적거동 특성에 미치는 영향 연구)

  • Shin, Jeong-Ryol;Kim, Hyun-Min;Sohn, Hoon;Yun, Chung-Bang
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.854-863
    • /
    • 2008
  • A high attention has been paid on the running safety of Korean high-speed train, KTX. In running of KTX on bridge, the running unsafety problem issued from a resonance phenomenon of bridge, which was usually caused by the periodic wheel-loads of train. Therefore, many researches on this running safety of train on bridge have been conducted by domestic or foreign researchers. In this paper, for PSC box-girder bridge which is the representative high-speed railway bridge type, some numerical analyses on the dynamic characteristics of bridge with the non-periodic wheel-loads through vehicle size adjustment were performed. These numerical analyses shows the fact that the resonance phenomenon on bridge was mitigated through vehicle size adjustment. Additional numerical analyses on the vibration reduction of bridge in accordance with the location of size-adjusted vehicle were performed. From these results, it was represented that the adjustment of vehicle size has an effect on the running safety of train as well as the ride comfort.

  • PDF