• Title/Summary/Keyword: rice paddy soil

Search Result 1,044, Processing Time 0.027 seconds

Heavy Metal Contamination in Soil, Rice, and Sediment from ManKyeong and DongJin River Area (만경강·동진강 유역의 토양, 현미, 저질토중의 중금속 함량 및 분포)

  • Kwon, Young-Hun;Sung, Kum-Soo;Hwang, Gab-Soo;Chang, Che-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.2
    • /
    • pp.143-153
    • /
    • 2000
  • This study was performed to investigate the heavy metal contents and distribution in soil, sediment, and rice from the downstream area of ManKyeong and DongJin River. Of the sites on Mankyeong river area, site M-1(Mokchon bridge) showed the highest average contents of Cd, Cr and Pb in paddy soil. In DongJin river area, site D-3(Munpo) and D-4(Gerjeonri) showed relatively high level of average contents of Cr, Pb and Zn in paddy soil. The average contents of heavy metals in brown rice from ManKyeong river area were 0.10mg/kg for Cd, 0.99mg/kg for Cr, 2.07mg/kg for Pb, 4.44mg/kg for Cu and 32.03mg/kg for Zn while those in brown rice from DongJin river area were 0.14mg/kg for Cd, 0.74mg/kg for Cr, 1.78mg/kg for Pb, 4.57mg/kg for Cu and 33.60mg/kg for Zn. Zn showed the highest transportation-rate from paddy soil to brown rice while Pb showed the lowest. From the results of heavy metal analysis in sediments, the average contents of Cd, Cr, Pb and Cu were generally high in site M-5(Euonri) and D-4(Gerjeonri), the most downstream sites in Mankyeong river and DongJin river, respectively.

  • PDF

Effects of Phospho-gypsum Fertilizer as Reclamation Material in the Newly Reclaimed Paddy Fields (간척지 논의 부산석고비료 시용효과)

  • Sohn, Bo-Kyoon;Lee, Do-Jin;Park, Bum-Ki;Chae, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.2
    • /
    • pp.145-150
    • /
    • 2007
  • This study was conducted to evaluate the application effects of phospho-gypsum fertilizer (PGF) as reclamation material in the newly reclaimed paddy fields located in Goheung and Youngam, Jeonnam province in Korea. The PGF used in this experiment was produced by Namhae Chemical Co. as the name of Soil-Saver$^{TM}$. Prior to rice transplanting, the PGF was applied as soil amendment as the amount of $3,000kg\;ha^{-1}$. The PGF increases rice plant height and number of tiller at the heading stage by 119.9 cm and 9.1, respectively, in Youngam area. The harvest index of brown rice increased up to 5 and 13% more in the PGF applied paddy field from both sites than in the non-application of PGF at paddy field before rice transplanting, and the ripening ratio in increased in both sites to 81 and 90%. Protein content of brown rice was also greater than in the non-application of PGF at the both sites. For the effects of the reclamation by PGF in the paddy field soils, we found that PGF reduced exchangeable Na to 18 and 28% for both sites, respectively, and increased exchangeable Ca and $SO_4$. And we found relatively higher amounts of $K_2O$, CaO and MgO in the rice plants from both sites applied with PGF.

Pollution of Heavy Metals in Paddy Soils Around the Downstream Area of Abandoned Metal Mine and Efficiency of Reversed Soil Method as Its Remediation (폐금속광산 하부 농경지 토양의 중금속오염과 그 복구방법으로서 반전객토의 효율성)

  • Na, Choon-Ki;Lee, Mu-Seong;Chung, Jae-Il
    • Economic and Environmental Geology
    • /
    • v.30 no.2
    • /
    • pp.123-135
    • /
    • 1997
  • In order to investigate the dispersion patterns and contamination level of heavy metals in the soil-ecosystem and to evaluate the efficiency of soil remediation by reversed soil method, soils and plants were collected from the Dongjin Au-Ag-Cu mine area and analysed for heavy metals. The dispersion patterns of heavy metals in soils and plants show that heavy metal pollutions caused by waste rump around Dongjin mine are mainly found in the vicinity of the waste rump and in the southward slanting of mine. Toxic metallic pollutants from the mine influence heavy metal contents in paddy soils in downstream area, and may be a potential sources of heavy metal pollution on crop plants. Soil samples collected from the remediated rice farming field by reversed method show similar levels of heavy metal content to those from the polluted rice farming field, but topsoil enrichment of heavy metals are not found. Heavy metal contents of the rice plants collected from remediated rice farming field are significantly lower than those from polluted rice farming field, and it suggests that the reversed soil method is effective for the reduction of bioavailability of heavy metals.

  • PDF

Distribution of Pesticide Applied with Different Formulations and Rice Growing Stages in Paddy Fields (벼 재배환경에서 생육단계에 따른 제형별 살포농약의 분포특성)

  • Park, Byung-Jun;Park, Sang-Won;Kim, Jin-Kyoung;Park, Kyung-Hun;Kim, Won-Il;Kwon, Oh-Kyung
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.1
    • /
    • pp.74-81
    • /
    • 2008
  • To elucidate the exposure of pesticide in agricultural environment and to investigate distribution of pesticide in paddy fields. This experiment was carried out to clarify pesticide distribution in paddy fields applied with different formulations and growing stages. Initial dissipation rate of applied butachlor EW and oxadiazon EC before rice planting were more than 90% within 3 days in paddy fields. The distribution of a.i. in the pesticide formulations tested depended upon the elapsed time at each growing stage of rice plant after application. Most of pesticides applied within 15 days after transplanting of rice seedlings, more than 95%, were located in the surface water and soil regardless of pesticides; butachlor, thiobencarb and molinate GR. The distribution of iprobenfos GR, tricyclazole WP and phenthoate EC, after application 2 hours in middle growing stage (46 days after rice planting) were shown as 16.1, 48.9 and 38.9% in surface water, 83.6, 15.4 and 10.7% in soil, and 0.3, 35.7 and 50.4% in rice plants of paddy fields, respectively. Also tricyclazole WP and phenthoate EC, after application 2 hours in the late rice growing stage (90 days after rice planting) were distributed to 7.8 and 9.8% in surface water, and 21.7 and 5.1% in soil, and 70.5 and 85.1% in rice plants of paddy fields, respectively.

Weedy Rice Control by No-tillage Direct Seeding on Flooded Paddy Field (무경운 담수표면산파에 의한 잡초성벼 방제)

  • 정남진;윤영환;김정곤;강양순
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.3
    • /
    • pp.195-198
    • /
    • 2000
  • Weedy rice has typical characters such as easy shattering, dormancy, and longevity. These characters let it undergo the winter and occur year by year, It is very difficult to control weedy rice once the field have contaminated with its seeds. Therefore, the control method for weedy rice was focused on the no-tillage direct seeding in this experiment. The germination ability of seeds shattered on the soil surface in the next spring was 92.7% in weedy rice, and 4.3% in cultivated rice. The possible depth of weedy rice emergence were 1.5cm, 3.0cm and 6.8cm in no-tillage, wet seeding and dry seeding paddy field, respectively. The paddy field contaminated with weedy rice was maintained as no-tillage, and then irrigated in early spring (April 15). We could induce weedy rice on the soil to emerge with irrigation, and then kill by using non-selective herbicide, paraquat. Weedy rice was controled 92.2% of total emerged by this method. After seedling establishment of cultivated rice, molinate, thiobencarb, oxadiazon, dithiopyr, butachlor were soil-applied to suppress the emergence of weedy rice seeds buried in the soil. Oxadiazon was the most effective to repress the weedy rice among soil-applied herbicides tested. The highest control value was 96.4% as the result of combination of paraquat and oxadiazon.

  • PDF

Water Quality Improvement Characteristics in Fallow Paddy by the Shallow Pool and Shallows (휴경지의 웅덩이와 여울에 의한 수질정화특성)

  • Kim, Sun-Joo;Kim, Hyung-Jung;Kim, Phil-Shik;Jee, Yong-Geun;Yang, Yong-Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.3
    • /
    • pp.35-45
    • /
    • 2006
  • Fallow paddy areas have been increased due to the import of cheap agricultural product, and the unbalance between farming cost and rice price since 1990. In domestic, rice production control that decrease paddy field area has been introduced for the control of rice demand and supply and stabilization of rice price since 2003. Because of the desire of paddy field's owner to create benefit by using paddy for other object, fallow paddy would be continuously increased. In the other aspect, many people in the world is suffering from hunger because of the shortage of food. In case of Korea, continuous drought and flood damages will be potential concern of stable food supply. From this viewpoint, the increasing fallow paddy area needs to be protected from the devastation by weed breeding for the re-cultivation. In this study, fallow paddy managed with the shallow pools and shallows was selected fur monitoring and analyzing of water quality and plant body change. As the results, the managed fallow paddy found to be effective in the purification of water quality and the control of plant growth.

Change in Available Phosphate by Application of Phosphate Fertilizer in Long-term Fertilization Experiment for Paddy Soil (인산질비료 장기연용 논토양에서 유효인산 변동)

  • Kim, Myung-Sook;Kim, Seok-Cheol;Yun, Sun-Gang;Park, Seong-Jin;Lee, Chang-Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.3
    • /
    • pp.141-146
    • /
    • 2017
  • BACKGROUND: Phosphorus(P) is a vital factor for rice but excess input of phosphorus fertilizer can cause environmental risk and waste of fertilizer resources. We studied to assess the change of available phosphate, P balance, critical concentration of available phosphate under a rice single system. METHODS AND RESULTS: The changes of available phosphate of paddy soil were examined from long-term fertilization experiment which was started in 1954 at the National Academy of Agricultural Science. The treatments were no phosphate fertilization(No fert., and N), phosphate fertilization(NPK, NPKC, and NPKCLS). The available phosphorus concentrations in treatments without phosphate fertilizer (No fert. and N) were decreased continuously. But, after 47 years, available phosphate content in phosphate fertilizer treatment (NPK, NPKC, and NPKCLS) reached at the highest ($245{\sim}331mg\;kg^{-1}$), showing a tendency to decrease afterward. The mean annual P field balance in these treatments (NPK, NPKC, and NPKCLS) had positive values that varied from 16.6 to $17.5kg\;ha^{-1}year^{-1}$, and ratio of residual P were increased. These showed that phosphate fertilizer in soil were converted into the form of residual phosphorus which was not easily extracted by available phosphate extractant. Also, It was estimated that the critical value of available phosphate for rice cultivation was $120mg\;kg^{-1}$ using Cate-Nelson equation. CONCLUSION: We concluded that no more phosphate fertilizer should be applied in rice single system if soil available phosphate is higher than the critical P value.

Residue of Imidacloprid in Hulled Rice and Paddy Soil (논 토양 및 현미중 Imidacloprid의 잔류성)

  • Moon, Young-Hee;Rang, Hee-Hyouk
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.4
    • /
    • pp.384-387
    • /
    • 1999
  • The residue of imidacloprid in hulled rice and paddy soil was investigated. In laboratory conditions, the degradation of imidacloprid in the soils followed first-order reaction kinetic. The rate of degradation was influenced by soil temperature and soil type. The half-life of imidacloprid at $18-28^{\circ}C$ was 66.7-96.3 days in the heavy clay soil and 56.8-117.5 days in the clay loam soil. Arrhenius activation energy obtained from the temperature experiment was 25.5 KJ/mol in heavy clay soil and 50.3 KJ/mol in clay loam soil. In paddy field, the degradation of imidacloprid was fast during the initial period but the degradation rate was gradually slow. About 10 % of the initial amount remained in the soil 120 day after the application. The residual amount of imidacloprid in rice was below the detection limit, 0.01 ppm. The residue level in rice was lower than MRL 0.05ppm in Korea.

  • PDF

Water and soil properties in organic and conventional paddies throughout the rice cultivation cycle in South Korea

  • Lee, Tae-Gu;Lee, Chang-Gu;Hong, Seung-Gil;Kim, Jin-Ho;Park, Seong-Jik
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.45-53
    • /
    • 2019
  • Water and soil properties in paddy fields subjected to organic and conventional farming were characterized over the rice cycle in South Korea. To achieve the goals of this study, we sampled and analyzed soil and water from 24 organic paddy plots and 11 conventional paddy plots in March, May, August, and October 2016. The results were analyzed using statistical analyses, including analysis of variance (ANOVA), cluster analysis, and principal component analysis. The ANOVA results showed that water content (WC), electrical conductivity (EC), organic matter (OM), and available phosphorus ($P_2O_5$) in soil varied significantly (p < 0.01) depending on the farming method. Higher OM, EC, and $P_2O_5$ of soil were observed in the conventional paddies than in the organic paddies. All soil properties, except pH and ammonium, depended on seasonal variation. Cluster analysis revealed that soil properties in May were distinctly separated from those in other seasons mainly due to basal fertilization. The principal component analysis distinguished the soil properties in different seasons, but such a distinction was not observed between the soil properties in organic and conventional paddies. Low contents of WC, OM, and total N were observed in March. High concentrations of nitrate and total P were observed in May, but these were low in August and October. The soils from October were also characterized by high concentrations of EC and $P_2O_5$. These results indicate that the sampling time for soil and water can significantly influence the evaluation of soil properties with different farming methods.

Establishment of Baseline Emission Factor of Methane in Korean Rice Paddy Soil (국내 벼 논에서 메탄 기본배출계수 개발)

  • Kim, Gun-Yeob;Jeong, Hyun-Cheol;Ju, Ok-Jung;Kim, Hee-Kwon;Park, Jun-Hong;Gwon, Hyo-Suk;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.359-365
    • /
    • 2013
  • BACKGROUND: Methane ($CH_4$) emission is calculated using the default $CH_4$ emission factor as recommended by the International Panel on Climate Change(IPCC guidelines). However, the default emission factor has been derived using including the data from other countries having different soil and environmental conditions and may not reflect the real $CH_4$ emission rates in Korea. The objective of this study was to estimate the baseline emission factor of $CH_4$ in Korean paddy soils during rice cultivation. METHODS AND RESULTS: Methane emission patterns were characterized in four different paddy soils across country for a consecutive 3 years during the rice cultivation period. Rice plants were cultivated under continuous flooding and fertilized using the recommended chemical fertilization in Korea ($N-P_2O_5-K_2O$=90-45-57kg/ha). The mean $CH_4$ emission rate was 2.32 kg $CH_4$/ha/day and the uncertainty of the investigated data was 21.7%, with a valuable error range at 1.82-2.82 kg $CH_4$/ha/day with a 95% confidence interval. CONCLUSION(S): Conclusively, the Korean paddy soils' baseline emission factor of $CH_4$ is approximately 2.32 kg $CH_4$/ha/day and can be used to estimate the $CH_4$ emissions more exactly.