• Title/Summary/Keyword: rice blast.

Search Result 496, Processing Time 0.031 seconds

Pi5 and Pii Paired NLRs Are Functionally Exchangeable and Confer Similar Disease Resistance Specificity

  • Vo, Kieu Thi Xuan;Lee, Sang-Kyu;Halane, Morgan K.;Song, Min-Young;Hoang, Trung Viet;Kim, Chi-Yeol;Park, Sook-Young;Jeon, Junhyun;Kim, Sun Tae;Sohn, Kee Hoon;Jeon, Jong-Seong
    • Molecules and Cells
    • /
    • v.42 no.9
    • /
    • pp.637-645
    • /
    • 2019
  • Effector-triggered immunity (ETI) is an effective layer of plant defense initiated upon recognition of avirulence (Avr) effectors from pathogens by cognate plant disease resistance (R) proteins. In rice, a large number of R genes have been characterized from various cultivars and have greatly contributed to breeding programs to improve resistance against the rice blast pathogen Magnaporthe oryzae. The extreme diversity of R gene repertoires is thought to be a result of co-evolutionary history between rice and its pathogens including M. oryzae. Here we show that Pii is an allele of Pi5 by DNA sequence characterization and complementation analysis. Pii-1 and Pii-2 cDNAs were cloned by reverse transcription polymerase chain reaction from the Pii-carrying cultivar Fujisaka5. The complementation test in susceptible rice cultivar Dongjin demonstrated that the rice blast resistance mediated by Pii, similar to Pi5, requires the presence of two nucleotide-binding leucine-rich repeat genes, Pii-1 and Pii-2. Consistent with our hypothesis that Pi5 and Pii are functionally indistinguishable, the replacement of Pii-1 by Pi5-1 and Pii-2 by Pi5-2, respectively, does not change the level of disease resistance to M. oryzae carrying AVR-Pii. Surprisingly, Exo70F3, required for Pii-mediated resistance, is dispensable for Pi5-mediated resistance. Based on our results, despite similarities observed between Pi5 and Pii, we hypothesize that Pi5 and Pii pairs require partially distinct mechanisms to function.

A Rapid and Simple Method for DNA Preparation of Magnaporthe oryzae from Single Rice Blast Lesions for PCR-Based Molecular Analysis

  • Liying, Dong;Shufang, Liu;Jing, Li;Didier, Tharreau;Pei, Liu;Dayun, Tao;Qinzhong, Yang
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.679-684
    • /
    • 2022
  • Rice blast is one of the most destructive diseases of rice worldwide, and the causative agent is the filamentous ascomycete Magnaporthe oryzae. With the successful cloning of more and more avirulence genes from M. oryzae, the direct extraction of M. oryzae genomic DNA from infected rice tissue would be useful alternative for rapid monitoring of changes of avirulence genes without isolation and cultivation of the pathogen. In this study, a fast, low-cost and reliable method for DNA preparation of M. oryzae from a small piece of infected single rice leaf or neck lesion was established. This single step method only required 10 min for DNA preparation and conventional chemical reagents commonly found in the laboratory. The AvrPik and AvrPi9 genes were successfully amplified with the prepared DNA. The expected DNA fragments from 570 bp to 1,139 bp could be amplified even three months after DNA preparation. This method was also suitable for DNA preparation from M. oryzae strains stored on the filter paper. All together these results indicate that the DNA preparation method established in this study is reliable, and could meet the basic needs for polymerase chain reaction-based analysis of M. oryzae.

Distribution of Rice Blast Disease and Pathotype Analysis in 2014 and 2015 in Korea (2014년과 2015년 잎 도열병 발생 분포 및 레이스 분포 현황)

  • Kim, Yangseon;Go, Jaeduk;Kang, In Jeong;Shim, Hyeong-Kwon;Shin, Dong Bum;Heu, Sunggi;Roh, Jae-Hwan
    • Research in Plant Disease
    • /
    • v.22 no.4
    • /
    • pp.264-268
    • /
    • 2016
  • The nursery test against rice blast in Korea from 2014 to 2015 was analyzed. The average of disease severity of leaf blast in 12 sites showed $3.7{\pm}2.1$ in 2014 and $4.4{\pm}2.1$ in 2015. Disease severity of leaf blast in Icheon and Cheolwon was increased ranging from $2.8{\pm}2.2$ in 2014 to $6.3{\pm}1.8$ in 2015. Using a designation system, a total of 588 isolates collected those years were categorized into 34 races in 2014 and 51 races in 2015 based on the reaction pattern of Korean differential varieties. The blast isolates of 2015 were more diverse than those in 2014. The ratios of KI race to KJ race were 54:46 in 2014 and 70:30 in 2015; however, the predominant race population was KJ-301 as 16%, and KI-101 as 15% in 2014 and 2015, respectively. These results indicate that the distribution of the blast races is getting more diverse in Korea, therefore, this research would provide the possibility to predict race distribution and change to prevent the outbreak of rice blast and will also serve as a useful information for breeding of resistant rice cultivar against blast.

Annual and Regional Incidences of Rice Blast on New Rice Cultivars and Elite Lines Selected for 1996 Releases in Korea (1996년도에 명명된 우리나라 육종벼 신품종 및 유망계통의 연도 및 지역별 동려병 발생정도)

  • 라동수;한성숙;민홍식;김장규;류화영
    • Korean Journal Plant Pathology
    • /
    • v.12 no.3
    • /
    • pp.345-350
    • /
    • 1996
  • 작물시험장 등 한국의 3개 기관에서 육성하여 1996년도 신품종으로 명명된 다산벼 등 10개 품종과 수원400호 등 6계통을 공시하여 1993년부터 1995년까지 3년동안 이천 등 4개 지역에서 도열병에 대한 발병정도 차이를 검토하였다. 밭못자리검정 결과, 다산벼, 안산벼 빛 남천벼는 발병정도 0∼7로 중도저항성 반응을 보였다. 본답에서의 잎도열병은 다산벼, 안산벼, 남천벼 일미벼 및 밀양123호에서는 전혀 발생되지 않았고, 이삭도열병 발생은 다산벼 0.7%, 안산벼 및 남천벼 1.3%, 수원400호 1.6%를 제외하고는 지역과 연도에 따라 발병정도가 달랐다. 특히 화신벼, 향남벼, 삼천벼, 일미벼 및 중화벼의 경우 이천, 춘천과 나주에서는 이삭도열병이 경미하거나 전혀 발병되지 않았으나, 1995년도 제천에서 16.1∼55.6%로 지역간, 연차간 발병정도의 차이가 심하였다. 또한 도열병균의 레이스 분포상황은 지역별로 다양하였으나 특히 이천 및 제천에서 최근에 판별된 레이스 KI-197의 분포비율이 높았다.

  • PDF

Expression Patterns of Transposable Elements in Magnaporthe oryzae under Diverse Developmental and Environmental Conditions

  • Chung, Hyunjung;Kang, Seogchan;Lee, Yong-Hwan;Park, Sook-Young
    • Research in Plant Disease
    • /
    • v.26 no.1
    • /
    • pp.38-43
    • /
    • 2020
  • The genome of the rice blast fungus Magnaporthe oryzae contains several types of transposable elements (TEs), and some TEs cause genetic variation that allows M. oryzae to evade host detection. We studied how five abundant TEs in rice pathogens, Pot3, Pot2, MAGGY, Line-like element (MGL) and Mg-SINE, are expressed under diverse conditions related to growth, development, and stress. Expression of Pot3 and Pot2 was activated in germinated conidia and mycelia treated with tricyclazole. Retrotransposon MAGGY was highly expressed in appressoria and tricyclazole-treated mycelia. MAGGY and Pot2 were also activated during the early and late stages of perithecia development. MGL was up-regulated in conidia and during conidial germination but not during appressorium formation. No noticeable expression of Mg-SINE was observed under most conditions. Our results should help investigate if and how condition-specific expressions of some TEs contribute to the biology and evolution of M. oryzae.

Genome-Wide Analysis of Hypoxia-Responsive Genes in the Rice Blast Fungus

  • Choi, Jaehyuk;Chung, Hyunjung;Lee, Gir-Won;Koh, Sun-Ki;Chae, Suhn-Kee;Lee, Yong-Hwan
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.13-13
    • /
    • 2015
  • Rice blast fungus, Magnaporthe oryzae, is the most destructive pathogen of rice in the world. This fungus has a biotrophic phase early in infection and switches to a necrotrophic lifestyle after host cell death. During the biotrophic phase, the fungus competes with host for nutrients and oxygen. Continuous uptake of oxygen is essential for successful establishment of blast disease of this pathogen. Here, we report transcriptional responses of the fungus to oxygen limitation. Transcriptome analysis using RNA-Seq identified 1,047 up-regulated genes in response to hypoxia. Those genes were involved in mycelial development, sterol biosynthesis, and metal ion transport based on hierarchical GO terms and well-conserved among three different fungal species. In addition, null mutants of three hypoxia-responsive genes were generated and tested for their roles on fungal development and pathogenicity. The mutants for a sterol regulatory element-binding protein gene, MoSRE1, and C4 methyl sterol oxidase gene, ERG25, exhibited increased sensitivity to hypoxia-mimetic agent, increased conidiation, and delayed invasive growth within host cells, suggesting important roles in fungal development. However, such defects did not cause any significant decrease in disease severity. The other null mutant for alcohol dehydrogenase gene, MoADH1, showed no defect in the hypoxia-mimic condition and fungal development. Taken together, this comprehensive transcriptional profiling in response to a hypoxia condition with experimental validations would provide new insights on fungal development and pathogenicity in plant pathogenic fungi.

  • PDF

Synthesis and Phytopathogenic Activities of Isopropylphenyl Derivatives (Isopropylphenyl 유도체들의 합성과 식물병원균에 대한 항균활성)

  • Jang, Do-Yeon;Choi, Kyoung-Gil;Lee, Byung-Ho;Kim, Tae-Jun;Jung, Bong-Jin;Choi, Won-Sik
    • Applied Biological Chemistry
    • /
    • v.50 no.3
    • /
    • pp.178-186
    • /
    • 2007
  • 42 compounds such as ester, sulfonyl ester, phosphoyl ester and ether derivatives of 4-isopropylphenol (I) and 2-isopropylphenol (II) were synthesized. These derivatives were identified by IR, GC/MS and $^{1}H-NMR$ spectra. Their in vitro antifungal activities were tested against 10 plant pathogenic fungi. Among them, several compounds showed potent in vitro antifungal activity. The selected compounds showing potent in vitro antifungal activity were tested for their in vivo antifungal acitvities against 5 plant diseases such as rice blast, rice sheath blast, cucumber anthracnose, cucumber gray mold and tomato late blight. As a result, 2-isopropylphenyl piperonyloate (II-7a) showed a potent in vivo antifungal activity against cucumber anthracnose and tomato late blight, 4-isopropylphenyl 4-methoxybenzenesulfonate (I-6b) effectively inhibited the development of rice blast.

A Histone Deacetylase, MoHDA1 Regulates Asexual Development and Virulence in the Rice Blast Fungus

  • Kim, Taehyun;Lee, Song Hee;Oh, Young Taek;Jeon, Junhyun
    • The Plant Pathology Journal
    • /
    • v.36 no.4
    • /
    • pp.314-322
    • /
    • 2020
  • Interplay between histone acetylation and deacetylation is one of the key components in epigenetic regulation of transcription. Here we report the requirement of MoHDA1-mediated histone deacetylation during asexual development and pathogenesis for the rice blast fungus, Magnaporthe oryzae. Structural similarity and phylogenetic analysis suggested that MoHDA1 is an ortholog of Saccharomyces cerevisiae Hda1, which is a representative member of class II histone deacetylases. Targeted deletion of MoHDA1 caused a little decrease in radial growth and large reduction in asexual sporulation. Comparison of acetylation levels for H3K9 and H3K14 showed that lack of MoHDA1 gene led to significant increase in H3K9 and H3K14 acetylation level, compared to the wild-type and complementation strain, confirming that it is a bona fide histone deacetylase. Expression analysis on some of the key genes involved in asexual reproduction under sporulation-promoting condition showed almost no differences among strains, except for MoCON6 gene, which was up-regulated more than 6-fold in the mutant than wild-type. Although the deletion mutant displayed little defects in germination and subsequent appressorium formation, the mutant was compromised in its ability to cause disease. Wound-inoculation showed that the mutant is impaired in invasive growth as well. We found that the mutant was defective in appressorium-mediated penetration of host, but did not lose the ability to grow on the media containing H2O2. Taken together, our data suggest that MoHDA1-dependent histone deacetylation is important for efficient asexual development and infection of host plants in M. oryzae.

Quality Characteristics of Korean Rice Cake by Freezing Methods (냉동 방법에 따른 떡의 품질특성 변화)

  • Lee, Hye-Jin;Ku, Su-Kyung;Choi, Hee-Don;Park, Jong-Dae;Sung, Jung-Min;Kim, Young-Boong;Choi, Hyun-Wook;Choi, Yun-Sang
    • Korean journal of food and cookery science
    • /
    • v.33 no.2
    • /
    • pp.148-154
    • /
    • 2017
  • Purpose: Frozen Korean traditional rice cakes (Sulgitteok and Garaetteok) were evaluated different conditions ($-20^{\circ}C$ and $-10^{\circ}C$) freezing (magnetic resonance quick freezing and air blast freezing) to study differences in quality characteristics. Methods: Experiments analyze Korean rice cakes for water content, water activity, color, textural properties, and sensory characteristics. Results: Moisture content showed high value at $-20^{\circ}C$ freezing regardless of freezing method. Water activity was higher at $-20^{\circ}C$ than $-10^{\circ}C$, and water activity higher magnetic resonance quick freezing than air blast freezing. The lightness values were higher $-20^{\circ}C$ freezing temperature compare to $-10^{\circ}C$ freezing temperature. Hardness and chewiness were the lowest $-20^{\circ}C$ magnetic resonance quick freezing. sensory evaluation both Sulgitteok and Garaetteok showed better overall acceptability at $-20^{\circ}C$ magnetic resonance quick freezing. Conclusion: Therefore, the $-20^{\circ}C$ magnetic resonance quick freezing method resulted in favorable textural properties and sensory characteristics.

Leveraging Rice Genetic Diversity: Connecting the Genebank to Mainstream Breeding

  • J. Damien Platten
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.31-31
    • /
    • 2022
  • Rice contains a wealth of genetic diversity, both within Oryza sativa and in related A-genome species. Decades of genetic research into this diversity have identified dozens of major genes contributing to a wide variety of important traits, including disease resistance, abiotic stress tolerance (drought, salinity, submergence, heat, cold etc.), grain quality, flowering date and maturity and plant architecture. Yet despite these opportunities, very few of the major genes and QTLs known have been successfully applied through rice breeding programs to produce sustained changes in farmer's fields. This presentation will briefly examine some of the factors limiting application of major genes in the mainstream breeding programs, and steps that have been taken to alleviate those limitations. As a result of these interventions, dozens of major genes that were previously unavailable to breeders are now being used confidently in the variety development process. Case studies will be discussed of genes critical for blast resistance worldwide, rice yellow mottle virus for Africa, and new validated QTLs for salinity tolerance.

  • PDF