• Title/Summary/Keyword: rheological model

Search Result 384, Processing Time 0.032 seconds

Spreading Kinetics of Poly(diisobutylene maleic acid) at the Air-water Interface

  • Kim, Nam Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.661-668
    • /
    • 2015
  • The surface rheological properties of polymer monolayer show complicated non-linear viscoelastic flow phenomena when they are subjected to spreading flow. These spreading flow properties are controlled by the characteristics of flow units. The kinetics of the formation of an interfacial film obtained after spreading poly(diisobutylene maleic acid) at air-water interface were studied by measuring of the surface pressure with time. The experimental data were analyzed theoretically according to a nonlinear surface viscoelastic model. The values of dynamic modulus, static modulus, surface viscosities and rheological parameters in various area/ monomer were obtained by appling experimental data to the equation of nonlinear surface viscoelastic model.

Rheological Properties of Exopolysaccharide EPS-R Produced by Marine Bacterium Hahella chejuensis KCTC 2395

  • Ahn, Se-Hun;Yim, Joung-Han;Kim, Sung-Jin;Lee, Hong-Kum
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.808-811
    • /
    • 2001
  • The rheological properties of exopolysaccharide(EPS-R) produced by marine bacteria Hahella chjuensis KCTC 2395 was investigated. EPS-R solution showed a characteristic non-Newtonian behavior fluid properties. In aqueose dispersions of EPS-R 1%, consistency index(K) and flow behavior index(n) were 1,410 cp and 0.73. EPS-R solution was pseudoplastic fluid by power-low model. Rheological propertie of EPS-R was found to be influenced by the concentration of salt, pH, temperature and ionic compounds.

  • PDF

Nonlinear viscous material model

  • Ivica Kozar;Ivana Ban;Ivan Zambon
    • Coupled systems mechanics
    • /
    • v.12 no.5
    • /
    • pp.419-428
    • /
    • 2023
  • We have developed a model for estimating the parameters of viscous materials from indirect tensile tests for asphalt. This is a simple Burger nonlinear rheological two-cell model or standard model. At the same time, we begin to develop a more versatile and complex multi-cell model. The simple model is validated using experimental load-displacement results from laboratory tests: The recorded displacements are used as input values and the measured force data are simulated with the model. The optimal model parameters are estimated using the Levenberg-Marquardt method and a very good agreement between the experimental results and the model calculations is shown. However, not all parts of the model are active in the loading phase of the experiment, so we extended the validation of the model to the simulation of the relaxation behaviour. In this stage, the other model parameters are activated and the simulation results are consistent with the literature. At this stage, we have estimated the parameters only for the two-cell uniaxial model, but further work will include results for the multi-cell model.

Prediction of the Rheological Properties of Cement Mortar Applying Multiscale Techniques (멀티스케일 기법을 적용한 시멘트 모르타르의 유변특성 예측)

  • Eun-Seok Choi;Jun-Woo Lee;Su-Tae Kang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.69-76
    • /
    • 2024
  • The rheological properties of fresh concrete significantly influence its manufacturing and performance. However, the diversification of newly developed mixtures and manufacturing techniques has made it challenging to accurately predict these properties using traditional empirical methods. This study introduces a multiscale rheological property prediction model designed to quantitatively anticipate the rheological characteristics from nano-scale interparticle interactions, such as those among cement particles, to micro-scale behaviors, such as those involving fine aggregates. The Yield Stress Model (YODEL), the Chateau-Ovarlez-Trung equation, and the Krieger-Dougherty equation were utilized to predict the yield stress for cement paste and mortar, as well as the plastic viscosity. Initially, predictions were made for the paste scale, using the water-cement ratio (W/C) of the cement paste. These predictions then served as a basis for further forecasting of the rheological properties at the mortar scale, incorporating the same W/C and adding the cement-sand volume ratio (C/S). Lastly, the practicality of the predictive model was assessed by comparing the forecasted outcomes to experimental results obtained from rotational rheometer.

Morphological and rheological properties of culture broth of Cephalosporium acremonium M25

  • Lim, Jung-Soo;Kim, Jin-Hee;Kim, Chongyoup;Kim, Seung-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.1
    • /
    • pp.11-16
    • /
    • 2002
  • Cephalosporium acremonium is a filamentous microorganism producing cephalosporin C. The morphological differentiation of C. acremonium in submerged culture is closely related with the rheological properties of culture broth and production of cephalosporin C. In this study, the rheological and morphological properties of culture broth of C. acremonium were investigated. In the seed broths of shake-flask and fermenter culture, the Herschel-Berkley equation was in excellent agreement with experimental results in the whole range of shear rate. In the seed broths of shake-flask culture, morphological differentiation into arthrospores affected to changes of apparent viscosity. But results in the fermenter culture, morphological factors such as mean hyphal thickness and the number of tips gave more effect on changes of apparent vitacosity than differentiation into arthrospores. Overall, it suggested that the morphological parameters measured by image analysis can be used as a good parameter to indicate the rheological properties of culture broth of C. acremonium M25.

Study of the Rheological Properties of a Fermentation Broth of the Fungus Beauveria bassiana in a Bioreactor Under Different Hydrodynamic Conditions

  • Nunez-Ramirez, Diola Marina;Medina-Torres, Luis;Valencia-Lopez, Jose Javier;Calderas, Fausto;Lopez-Miranda, Javier;Medrano-Roldan, Hiram;Solis-Soto, Aquiles
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1494-1500
    • /
    • 2012
  • Fermentation with filamentous fungi in a bioreactor is a complex dynamic process that is affected by flow conditions and the evolution of the rheological properties of the medium. These properties are mainly affected by the biomass concentration and the morphology of the fungus. In this work, the rheological properties of a fermentation with the fungus Beauveria bassiana under different hydrodynamic conditions were studied and the rheological behavior of this broth was simulated through a mixture of carboxymethyl cellulose sodium and cellulose fibers (CMCNa-SF). The bioreactor was a 10 L CSTR tank operated at different stir velocities. Rheological results were similar at 100 and 300 rpm for both systems. However, there was a significant increase in the viscosity accompanied by a change in the consistence index, calculated according to the power law model, for both systems at 800 rpm. The systems exhibited shear-thinning behavior at all stir velocities, which was determined with the power law model. The mixing time was observed to increase as the cellulose content in the system increased and, consequently, the efficiency of mixing diminished. These results are thought to be due to the rheological and morphological similarities of the two fungal systems. These results will help in the optimization of scale-up production of these fungi.

A study on vibration characteristics and tuning of smart cantilevered beams featuring an electo-rheological fulid

  • Park, S.B.;Cheong, C.C.;Suh, M.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.134-141
    • /
    • 1993
  • Electro-Rheological(ER) fluids undergo a phase-change when subjected to an external electic field, and this phase-change typically manifests itself as a many-order-of-magnitude change in the rheological behavior. This phenomenon permits the global stiffness and energy- dissipation properties of the beam structures to be tuned in order to synthesize the desired vibration characteristics. This paper reports on a proof-of-concept experimental investigation focussed on evaluation the vibration properties of hollow cantilevered beams filled with an ER fluid. and consequently deriving an empirical model for predicting field-dependent vibration characteristics. A hydrous-based ER fluid consisting of corn starch and silicone oil is employed. The beams are considered to be uniform viscoelastic materials and modelled as a viscously-damped harmonic oscillator. Natural frequency, damping ratio and elastic modulus are evaluated with respect to the electric field and compared among three different beams: two types of different volume fraction of ER fluid and one type of different particle concentration of ER fluid by weight. Transient and forced vibration responses are examined in time domain to demonstrate the validity of the proposed empirical model and to evaluate the feasibility of using the ERfluid as an actuator in a closed-loop control system.

  • PDF

Rheological Properties of Acorn Flour Gels by Stress Relaxation Test (응력완화 검사(stress relaxation test)에 의한 도토리묵의 물리적 특성)

  • 김영아;이혜수
    • Korean journal of food and cookery science
    • /
    • v.1 no.1
    • /
    • pp.53-56
    • /
    • 1985
  • The rheological models of acorn flour gels with different concentrations were investigated by stress relaxation test. The analysis of relaxation curves by successive residual method revealed that the rheological behavior of acorn flour gels could be expressed by the 7-element, generalized Maxwell model. The equilibrium modulus and modulus of elasticity increased by the increment of acorn flour concentration.

  • PDF

Dynamic Characteristics Analysis of A Magneto-Rheological Damper (MR 댐퍼의 동특성 해석)

  • Jeong, Hee-Kyung;Baek, Woon-Kyung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.222-227
    • /
    • 2002
  • MR(Magneto-rheological) fluid is smart fluid that can change its characteristics then magnetic fields are applied. Recently, many researches have been performed on this MR fluid for the application in a vareity of areas including automobile shock absorbers. This paper describes the design procedure of a MR damper and the analysis results of its dynamic characteristics. MR fluid in the magnetic field shows initial yield shear stress and increasing resistive viscosity with final saturation thereafter. Herschel-Bulkley model is used to simulate the flow characteristics of MR fluid and magnetic analysis is used to identify the magnetic property of the MR fluid in the orifice of the damper. The dynamic characteristics of the damper was predicted and compared with the experimental results for typical sinusoidal excitations.

  • PDF