DOI QR코드

DOI QR Code

Prediction of the Rheological Properties of Cement Mortar Applying Multiscale Techniques

멀티스케일 기법을 적용한 시멘트 모르타르의 유변특성 예측

  • 최은석 (대구대학교 토목공학과) ;
  • 이준우 (대구대학교 토목공학과) ;
  • 강수태 (대구대학교 건축공학과)
  • Received : 2024.02.28
  • Accepted : 2024.04.01
  • Published : 2024.04.30

Abstract

The rheological properties of fresh concrete significantly influence its manufacturing and performance. However, the diversification of newly developed mixtures and manufacturing techniques has made it challenging to accurately predict these properties using traditional empirical methods. This study introduces a multiscale rheological property prediction model designed to quantitatively anticipate the rheological characteristics from nano-scale interparticle interactions, such as those among cement particles, to micro-scale behaviors, such as those involving fine aggregates. The Yield Stress Model (YODEL), the Chateau-Ovarlez-Trung equation, and the Krieger-Dougherty equation were utilized to predict the yield stress for cement paste and mortar, as well as the plastic viscosity. Initially, predictions were made for the paste scale, using the water-cement ratio (W/C) of the cement paste. These predictions then served as a basis for further forecasting of the rheological properties at the mortar scale, incorporating the same W/C and adding the cement-sand volume ratio (C/S). Lastly, the practicality of the predictive model was assessed by comparing the forecasted outcomes to experimental results obtained from rotational rheometer.

굳지 않은 콘크리트의 유변특성은 콘크리트의 제조 및 성능에 중요한 영향을 미치지만, 새롭게 개발되는 배합과 제조 공법의 다양화로 인하여 기존의 경험적 방법으로는 유변특성의 정확한 예측에 어려움이 있다. 본 연구에서는 시멘트 입자와 같은 나노 수준에서의 입자간 상호작용부터 잔골재와 같은 마이크로 수준에서의 유변학적 성질을 정량적으로 예측하기 위하여 멀티스케일 기법을 적용한 유변특성 예측 모델을 제안하였으며, 시멘트 페이스트의 항복응력, 모르타르의 항복응력 및 소성점도를 예측하기 위하여 YODEL(Yield stress mODEL), Chateau-Ovarlez-Trung 방정식 및 Krieger-Dougherty 방정식을 적용하였다. 일차적으로 시멘트 페이스트의 물-시멘트비(W/C)를 기준으로 하여 페이스트 스케일의 유변특성을 예측하였으며, 예측 결과를 토대로 동일한 W/C에 시멘트-잔골재 부피비(C/S)를 추가한 모르타르 스케일의 유변특성의 예측을 진행하였다. 시멘트 모르타르에 대한 유변특성 실험을 통하여 예측 결과와 실험 결과의 비교를 진행함으로써 예측 모델의 적용 가능성을 평가하였다.

Keywords

Acknowledgement

이 논문은 2023년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아수행된 연구이며(No.RS- 2023-00251506), 또한 2020년 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NO.2020R1F1A1049695).

References

  1. Barnes, H. A., Hutton, J. F., and Walters, K. (1989), An introduction to rheology, Amsterdam, Netherlands: Elsevier Science. 
  2. Chateau, X., Ovarlez, G., and Trung, K. L. (2008), Homogenization approach to the behavior of suspensions of noncolloidal particles in yield stress fluids, Journal of Rheology, 52(2), 489-506.  https://doi.org/10.1122/1.2838254
  3. Chen, L., Zhang, Y., Wang, L., Ruan, S., Chen, J., Li, H., and Tsang, D. C. (2022), Biochar-augmented carbon-negative concrete, Chemical Engineering Journal, 431, 133946. 
  4. Choi, E. S., Lee, J. W., and Kang, S, T. (2023), Prediction of Rheological Properties of Cement-Based Pastes Considering the Particle Properties of Binders, Journal of the Korea Institute for Structural Maintenance and Inspection, 27(6), 111-119 (in Korean).  https://doi.org/10.11112/JKSMI.2023.27.6.111
  5. Choi, H. S., and Choi, H. G. (2019), A study on the coating thickness of surface modified aggregate by using the excess paste theory and rheology value, Journal of the Korea Institute for Structural Maintenance and Inspection, 23(5), 23-29 (in Korean).  https://doi.org/10.11112/JKSMI.2019.23.5.23
  6. Choi, J. I., Park, S. E., and Lee, B. Y. (2017), Compressive Strength and Tensile Behavior of Ultra-High Performance Concrete and High-Ductile Cementless Composite, Journal of the Korea Institute for Structural Maintenance and Inspection, 21(3), 69-75 (in Korean).  https://doi.org/10.11112/JKSMI.2017.21.3.069
  7. Flatt, R. J., and Bowen, P. (2006), Yodel: a yield stress model for suspensions, Journal of the American Ceramic Society, 89(4), 1244-1256.  https://doi.org/10.1111/j.1551-2916.2005.00888.x
  8. Flatt, R. J., and Bowen, P. (2007), Yield stress of multimodal powder suspensions: an extension of the YODEL (Yield Stress mODEL), Journal of the American Ceramic Society, 90(4), 1038-1044.  https://doi.org/10.1111/j.1551-2916.2007.01595.x
  9. Ge, X., Goodwin, R. T., Yu, H., Romero, P., Abdelrahman, O., Sudhalkar, A., and Varshney, L. R. (2022), Accelerated Design and Deployment of Low-Carbon Concrete for Data Centers, In ACM SIGCAS/SIGCHI Conference on Computing and Sustainable Societies (COMPASS), 340-352.
  10. Hales, T., Adams, M., Bauer, G., Dang, T. D., Harrison, J., Le Truong, H., and Zumkeller, R. (2017), A formal proof of the Kepler conjecture. In Forum of mathematics, Pi (Vol. 5, p. e2). Cambridge University Press.  https://doi.org/10.1017/fmp.2017.1
  11. Krieger, I. M., and Dougherty, T. J. (1959), A mechanism for non-Newtonian flow in suspensions of rigid spheres, Transactions of the Society of Rheology, 3(1), 137-152.  https://doi.org/10.1122/1.548848
  12. Lee, J. H., Kim, J. H., and Kim, M. K. (2015), Fine aggregates size effect on rheological behavior of mortar, Journal of the Korea Academia-Industrial Cooperation Society, 16(8), 5636-5645 (in Korean).  https://doi.org/10.5762/KAIS.2015.16.8.5636
  13. Maglad, A. M., Amin, M., Zeyad, A. M., Tayeh, B. A., and Agwa, I. S. (2023). Engineering properties of ultra-high strength concrete containing sugarcane bagasse and corn stalk ashes, Journal of Materials Research and Technology, 23, 3196-3218.  https://doi.org/10.1016/j.jmrt.2023.01.197
  14. Rajagopalan, S. R., Lee, B. Y., and Kang, S. T. (2022), Prediction of the Rheological Properties of Fresh Cementitious Suspensions Considering Microstructural Parameters, Materials, 15(20), 7044. 
  15. Revilla-Cuesta, V., Skaf, M., Faleschini, F., Manso, J. M., and Ortega-Lopez, V. (2020), Self-compacting concrete manufactured with recycled concrete aggregate: An overview, Journal of Cleaner Production, 262, 121362. 
  16. Soliman, N. A., and Tagnit-Hamou, A. (2016). Development of ultra-high-performance concrete using glass powder-Towards ecofriendly concrete, Construction and Building Materials, 125, 600-612.  https://doi.org/10.1016/j.conbuildmat.2016.08.073
  17. Struble, L., and Sun, G. K. (1995), Viscosity of Portland cement paste as a function of concentration, Advanced Cement Based Materials, 2(2), 62-69.  https://doi.org/10.1016/1065-7355(95)90026-8
  18. Szecsy, R. S. (1997), Concrete rheology. Ph.D thesis, University of Illinois, Urbana-Champaign, IL. 
  19. Thiedeitz, M., Dressler, I., Krankel, T., Gehlen, C., and Lowke, D. (2020), Effect of pre-shear on agglomeration and rheological parameters of cement paste, Materials, 13(9), 2173. 
  20. Yim, H. J., Kim, J. H., and Shah, S. P. (2013), Cement particle flocculation and breakage monitoring under Couette flow, Cement and Concrete Research, 53, 36-43.  https://doi.org/10.1016/j.cemconres.2013.05.018
  21. Yoo, D. Y., and Yoon, Y. S. (2016), A review on structural behavior, design, and application of ultra-high-performance fiber-reinforced concrete, International Journal of Concrete Structures and Materials, 10, 125-142.  https://doi.org/10.1007/s40069-016-0143-x
  22. Zhao, Y., Yang, G., Zhu, L., Ding, Y., Guan, X., Wu, X., and Yang, Z. (2022), Effects of rheological properties and printing speed on molding accuracy of 3D printing basalt fiber cementitious materials, Journal of Materials Research and Technology, 21, 3462-3475. https://doi.org/10.1016/j.jmrt.2022.10.124