• 제목/요약/키워드: rf-glow discharge

검색결과 51건 처리시간 0.026초

Effect of Bias Voltage on the Micro Discharge Characteristics of MgO Film prepared by Unbalanced Magnetron Sputtering

  • Kim, Young-Kee;Park, Jung-Tea;Park, Cha-Soo;Cho, Jung-Soo;Park, Chung-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2000년도 제1회 학술대회 논문집
    • /
    • pp.101-102
    • /
    • 2000
  • The performance of ac plasma display panels (PDP) is influenced strongly by the surface glow discharge characteristics on the MgO thin films. This paper deals with the surface glow discharge characteristics and some physical properties of MgO thin films prepared by reactive RF planar unbalanced magnetron sputtering in connection with ac PDP. The samples prepared with the de bias voltage of -10V showed lower discharge voltage, lower erosion rate by ion bombardment, higher optic transparency and higher crack resistance in annealing process than those samples prepared by conventional magnetron sputtering or E-beam evaporation.

  • PDF

고속 입자 충격을 도입한 AC PDP의 MgO 보호층 형성에 관한 연구 (Preparation of MgO Protective layer for AC PDP by High Energy Particle Bombardment)

  • 김영기;박정태;고광식;김규섭;조정수;박정후
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권9호
    • /
    • pp.527-532
    • /
    • 2000
  • The performance of ac plasma display panels (PDP) is influenced strongly by the surface glow discharge characteristics on the MgO thin films. This paper deals with the surface glow discharge characteristics and some physical properties of MgO thin films prepared by reactive RF planar unbalanced magnetron sputtering in connection with ac PDP. The samples prepared with dc bias voltage of -10V showed lower discharge voltage and lower erosion rate byion bombardment than those samples prepared by conventional magnetron sputtering or E-beam evaporation. The main factor that improves the discharge characteristics by bias voltage is considered to be due to the morphology changes or crystal structure of the MgO thin film by ion bombardement during deposition process.

  • PDF

RF 글로우 방전에서의 플라즈마 밀도의 분포에 대한 연구 (A study for the distribution of plasma density in RF glow discharge)

  • 김기현;황주원;민병돈;김상식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.59-61
    • /
    • 2002
  • In this study we attempted to diagnose the distribution of nitrogen plasma density generated using PECVD(plasma enhanced chemical vapor deposition). The distribution of plasma density formed in a PECVD chamber were measured by DLP2000. The experiment results showed that the plasma density is related to RF power and gas flow rate. As RF power gets higher, the plasma density linearly increased. And the experimental results revealed that a pressure in chamber affects plasma density.

  • PDF

불평형 마그네트론 스파터링에 의해 형성된 MgO 박막의 글로우 방전특성에 관한 연구 (A Study on the Glow Discharge Characteristics of MgO thin film prepared by Unbalanced Magnetron Sputtering)

  • 김영기;박정태;고광식;김규섭;박정후;조정수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 E
    • /
    • pp.2236-2238
    • /
    • 1999
  • This paper deals with the surface glow discharge characteristics and some physical properties of MgO thin films prepared by RF unbalanced magnetron sputtering(UBMS) in surface discharge type AC PDP. The minimum discharge voltage is obtained for the sample of substrate holder bias voltage -10V. The main factors that improves the discharge characteristics by applied bias voltage is considered to be due to the morphology changes or crystal structure of the MgO thin film by ion bombardment during deposition process Moreover, the anti-sputtering characteristics of MgO thin film by UBMS is more excellent than that of balanced magnetron sputtering(BMS) and E-beam evaporation method.

  • PDF

Modeling and Experimental Study of Radio-frequency Glow Discharges and Applications for Plasma Processing

  • Kang, Nam-Jun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.179-179
    • /
    • 2012
  • Low pressure radio-frequency glow discharges are investigated using theoretical modeling and various experimental diagnostic methods. In the calculations, global models and transformer models are developed to understand the chemical kinetics as well as the electrical properties such as the effective collision frequency, the heating mechanism and the power transferred to the plasma electrons. In addition, Boltzmann equation solver is used to compensate the effect of the electron energy distribution function (EEDF) shape in the global model, and the general expression of energy balance for non-Maxwellian electrons is developed. In the experiments, a number of traditional plasma diagnostic methods are used to compare with calculated results such as Langmuir probe, optical emission spectroscopy (OES), optical absorption spectroscopy (OAS) and two-photon absorption laser-induced fluorescence (TALIF). These theoretical and experimental methods are applied to understand several interesting phenomena in low pressure ICP discharges. The chemical and physical properties of low pressure ICP discharges are described and the applications of these methods are discussed.

  • PDF

불평형 마그네트론 스파터링에 의한 AC PDP의 MgO 보호층 형성에 관한 연구 (Preparation of MgO Protective Layer for AC PDP by Unbalanced Magnetron Sputtering)

  • 고광식;김영기;박정태;김언진;조정수;박정후
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 영호남학술대회 논문집
    • /
    • pp.142-145
    • /
    • 2000
  • The performance of ac plasma display panels (PDP) is influenced strongly by the surface glow discharge characteristics on the MgO thin films. This paper deals with the surface glow discharge characteristics and some physical properties of MgO thin films prepared by reactive RF planar unbalanced magnetron sputtering in connection with ac PDP. The samples prepared with the dc bias voltage of -10V showed lower discharge voltage and lower erosion rate by ion bombardment than those samples prepared by conventional magnetron sputtering or E-beam evaporation. The main factor that improves the discharge characteristics by bias voltage is considered to be due to the morphology changes or crystal structure of the MgO thin film by ion bombardment during deposition process.

  • PDF

평판형 반응성 이온 식각기의 설계변수 분석 (Design Parameter Analysis for a Planar Type Reactive Ion Etcher)

  • 강봉구;박성호;전영진
    • 대한전자공학회논문지
    • /
    • 제26권11호
    • /
    • pp.1658-1665
    • /
    • 1989
  • Reactor design considerations over several critical parameters for a planar type reactive ion etcher are given. The etch uniformity is taken as a principal design constraint. The characteristics of economicaly available vacuum pumping system are taken as practical design constraints. A set of theoretical conditions on the chamber geometry and on the gas delivery and vacuum system, that satisfy the design constraints, are derived from basic properties of RF glow discharge and gas dynamics. The theoretical results are applied to decide design parameters of a practical single-wafer-per-chamber planar type reactive ion etching machine.

  • PDF

불평형 마그네트론 스파터링에 의한 AC PDP용 MgO 보호층의 최적형성조건에 관한 연구 (A Study on the Optimum Preparation Conditions of MgO Protecting Layer in AC PDP by Unbalanced Magnetron Sputtering)

  • 김영기;박정태;김규섭;조정수;박정후
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.1096-1098
    • /
    • 1999
  • The performance of as plasma display panels (PDP) is influenced strongly by the surface glow discharge characteristics on the MgO thin films. This paper deals with the optimum preparation conditions of MgO Protecting layer by RF unbalanced magnetron sputtering(UBMS) in surface discharge type AC PDP. The samples prepared with the do bias voltage of -10V showed lower discharge voltage, lower erosion rate as a consequence of ion bombardment, higher optic transparency and higher crack resistance in annealing process than those samples prepared by conventional magnetron sputtering or E-beam eraporation.

  • PDF

새로운 글로우 방전/유도결합 플라스마 장치(GD/ICP Interface)에 대한 기초 연구: Part Ⅰ. 기초 연구 (The Fundamental Studies of the New Glow Discharge/Inductively Coupled Plasma Interface: Part Ⅰ. Preliminary Studies)

  • 이계호;김형성;길효식
    • 대한화학회지
    • /
    • 제43권2호
    • /
    • pp.182-192
    • /
    • 1999
  • 글로우 방전(Glow Discharge, GD)과 유도결합플라스마(Inductively Coupled Plasma, ICP)-원자 방출분광법(Atomic Emission Spectrometer, AES)에서 사용되는 새로운 장치를 개발하였다. ICP-AES에서 GDAES로 전환하는 데 불과 15분 정도 소요되기 때문에, 고체 시료 및 액체시료에 포함된 극미량 원소분석을 신속하게 수행할 수 있다. 실험변수 중에서 냉각기체 유속, 시료운반기체 유속, 절단기체 유속, 보조기체 유속, 측정깊이, 이온 통과관 크기, 그리고 rf 전원의 세기 변화에 따른 원자 방출 복사선 변화에 미치는 영향을 조사 연구하였다. Cd(I) 228.8 nm, Mn(II) 257.61 nm, and Fe(II) 259.95 nm에서 측정한 검출한계는 각각 3.86, 1.49, 5.79 ppb로 측정되었으며, 직선성은 1.000으로서 우수하였다.

  • PDF

Simulation and Characteristic Measurement with Sputtering Conditions of Triode Magnetron Sputter

  • Kim, Hyun-Hoo;Lim, Kee-Joe
    • Transactions on Electrical and Electronic Materials
    • /
    • 제5권1호
    • /
    • pp.11-14
    • /
    • 2004
  • An rf triode magnetron sputtering system is designed and installed its construction in vacuum chamber. In order to calibrate the rf triode magnetron sputtering for thin films deposition processes, the effects of different glow discharge conditions were investigated in terms of the deposition rate measurements. The basic parameters for calibrating experiment in this sputtering system are rf power input, gas pressure, plasma current, and target-to-substrate distance. Because a knowledge of the deposition rate is necessary to control film thickness and to evaluate optimal conditions which are an important consideration in preparing better thin films, the deposition rates of copper as a testing material under the various sputtering conditions are investigated. Furthermore, a triode sputtering system designed in our team is simulated by the SIMION program. As a result, it is sure that the simulation of electron trajectories in the sputtering system is confined directly above the target surface by the force of E${\times}$B field. Finally, some teats with the above 4 different sputtering conditions demonstrate that the deposition rate of rf triode magnetron sputtering is relatively higher than that of the conventional sputtering system. This means that the higher deposition rate is probably caused by a high ion density in the triode and magnetron system. The erosion area of target surface bombarded by Ar ion is sputtered widely on the whole target except on both magnet sides. Therefore, the designed rf triode magnetron sputtering is a powerful deposition system.