• Title/Summary/Keyword: reverse operation

Search Result 384, Processing Time 0.025 seconds

Implementation of Digital Control for Critical Conduction Mode Power Factor Correction Rectifier

  • Shin, Jong-Won;Baek, Jong-Bok;Cho, Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.147-148
    • /
    • 2011
  • In this paper, implementation of digital control for critical conduction mode power factor correction (PFC) rectifier is presented. Critical conduction mode is widely used in medium and low power conversion application due to its minimized MOSFET turn-on loss and diode reverse-recovery problem. However, it needs additional zero current detection circuit and maximum frequency limit to properly turn the MOSFET on and avoid the excessive switching loss in light load operation. This paper explains the digital IC implementation and verifies its operation with 200-W prototype PFC rectifier.

  • PDF

Performance Prediction of Main Coolant Pump in Integral Reactor SMART (일체형원자로 SMART 냉각재순환펌프의 성능예측)

  • Kim Min-Hwan;Park Jin-Seok;Kim Jong-In
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.118-125
    • /
    • 2001
  • The performance prediction of SMART MCP was performed using a computational fluid dynamics code. General capacity-head performance curve of MCP, which is provided to other design branches as design input, was obtained and it showed the typical type of axial pump performance curve. When four MCPs operate in parallel and one of them stops while the others continue to operate, SMART requires reduced power operation. A procedure for predicting the performance of SMART MCP for that case was developed and verified with available experimental data. An analysis based on the developed procedure was performed for two cases; the impeller of sloped MCP is fixed or free to rotate in reverse direction. According to the results, $73\%$ flow rate of normal operation enters the reactor core in the case of the locked impeller. In case of the impeller free rotation, the flow rate entering the reactor core is $62.8\%$.

  • PDF

The Wave Exciting Forces Acting on a Submerged-Plate

  • Lee, Sang-Min;Kong, Gil-Young;Kim, Chol-Seong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.203-207
    • /
    • 2004
  • In this study, we focus on the submerged plate built into the Very Large Floating Structure with the partial openings of 5m long, which enables the reverse flow of incident wave to generate the wave breaking. The purpose of this study is to investigate the characteristics of wave exciting forces acting on the submerged plate. Firstly, we have carried out the extensive experiments to understand the characteristics of the wave exciting forces. Then we have performed the numerical simulations by applying the Marker and Cell method and compare with the experimental results. We discuss the validity of MAC method and the effects of the submerged plate on the motion of VLFS.

  • PDF

Solid Oxide Fuel Cells for Power Generation and Hydrogen Production

  • Minh, Nguyen Q.
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Solid oxide fuel cells (SOFCs) have been under development for a variety of power generation applications. Power system sizes considered range from small watt-size units (e.g., 50-W portable devices) to very large multi-megawatt systems (e.g., 500-MW base load power plants). Because of the reversibility of its operation, the SOFC has also been developed to operate under reverse or electrolysis mode for hydrogen production from steam (In this case, the cell is referred to as solid oxide electrolysis cell or SOEC.). Potential applications for the SOEC include on-site and large-scale hydrogen production. One critical requirement for practical uses of these systems is long-term performance stability under specified operating conditions. Intrinsic material properties and operating environments can have significant effects on cell performance stability, thus performance degradation rate. This paper discusses potential applications of the SOFC/SOEC, technological status and current research and development (R&D) direction, and certain aspects of long-term performance degradation in the operation of SOFCs/SOECs for power generation/hydrogen production.

Development & Application of New Multi-Purpose Rolling Oil (일반강, SiliconSteel, StainlessSteel겸용 수용성 냉간압연유의 개발 및 적용)

  • SONG K. B.;KWOUN G. J.;KIM M. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.261-267
    • /
    • 2004
  • Current steel makers are trying to develop new manufacturing process to secure price competition and to improve productivity by testing a various kinds of rolling condition of several kinds of steel at TCM. Accordingly, Reverse Mill operation for Stainless steel is changing to TCM operation and furthermore, even general carbon steel and electric steel plate are requested to be worked at TCM simultaneously. By these changing of rolling condition, it become to be necessary to develop new water-soluble cold rolling oil that has a characteristics to be suitable for various working condition and in this report, we would like to mention lubrication condition to fulfill requested characteristics of each steels and development and applying result of multi-purpose water-soluble cold rolling oil which has such an lubrication property.

  • PDF

ZVT boost converter with minimizing conduction losses of the main switch (주 스위치의 전도손실을 최소화한 ZVT 부스터 컨버터)

  • Chin Gi-Ho;Kang Ahn-Jong;Kim Tae-Woo;Kim Hack-Sung
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.95-98
    • /
    • 2003
  • A ZVT PWM Boost Converter is proposed to reduce current stresses and conduction losses of main switch in a conventional circuit. By attaching resonant inductor Lr1 in parallel with capacitor Cr, the resonant circulating current is diverted to the additional component and then the main switch is subjected to minimum current stresses same as those in their PWM counterparts. Moreover, the operation of the auxiliary switch in a half wave mode to prevent reverse resonant energy from freewheeling can be able to lessen the conduction losses. The operation principles of the proposed converters are analyzed using the PWM boost converter topology as an example. Theoretically analysis and experimental results verify the validity of the boost converter topology with the proposed circuit.

  • PDF

Current Measurement based Reactive Power Control to Mitigate Overvoltage of Primary Distribution Line (배전선로 규정전압 유지를 위한 전류 측정치 기준의 무효전력 제어방법)

  • Hwang, Jihui;Lim, Seongil
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1547-1553
    • /
    • 2017
  • Due to the high penetration ratio of dispersed generations, overvoltage problem of the feeder has become more an important issue in distribution system operation. This paper proposes a new method for the smart inverter to control reactive power to mitigate voltage rise by the reverse power flow from the DGs. The proposed method controls reactive power based on current measurement while conventional methods use voltage measurement which include unacceptably large errors. Various case studies using MATLAB simulation have been performed to verify effectiveness of proposed method.

Programming Characteristics of the Multi-bit Devices Based on SONOS Structure (SONOS 구조를 갖는 멀티 비트 소자의 프로그래밍 특성)

  • 김주연
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.771-774
    • /
    • 2003
  • In this paper, the programming characteristics of the multi-bit devices based on SONOS structure are investigated. Our devices have been fabricated by 0.35 $\mu\textrm{m}$ complementary metal-oxide-semiconductor (CMOS) process with LOCOS isolation. In order to achieve the multi-bit operation per cell, charges must be locally frapped in the nitride layer above the channel near the source-drain junction. Programming method is selected by Channel Hot Electron (CUE) injection which is available for localized trap in nitride film. To demonstrate CHE injection, substrate current (Isub) and one-shot programming curve are investigated. The multi-bit operation which stores two-bit per cell is investigated. Also, Hot Hole(HH) injection for fast erasing is used. The fabricated SONOS devices have ultra-thinner gate dielectrics and then have lower programming voltage, simpler process and better scalability compared to any other multi-bit storage Flash memory. Our programming characteristics are shown to be the most promising for the multi-bit flash memory.

Input Current Ripple Reduction Algorithm for Interleaved DC-DC Converter (다상 DC-DC 컨버터의 입력 전류 리플 저감 제어 알고리즘)

  • Joo, Dong-Myoung;Kim, Dong-Hee;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.220-226
    • /
    • 2014
  • Input current ripple and harmonic components of the power device are main causes of electromagnetic interference (EMI). Although the discontinuous conduction mode (DCM) operation can reduce harmonic components of the power device by reducing reverse recovery current of diode and turn-off voltage spikes of the switch, input current ripple increases due to high peak to peak inductor current. Therefore, in this paper, frequency control algorithm is proposed to reduce the input current ripple of DCM operated interleaved boost converter. In the proposed algorithm, duty ratio is fixed either 0.33 or 0.67 to minimize the input current ripple and the switching frequency is controlled according to operating conditions. 600 W 3-phase interleaved boost converter prototype system is built to verify proposed algorithm.

Double Encryption of Image Based on Scramble Operation and Phase-Shifting Digital Holography (스크램블 연산 및 위상 천이 디지털 홀로그래피 기반 영상 이중 암호화)

  • Kim, Cheol-Su
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.4
    • /
    • pp.13-22
    • /
    • 2018
  • In this paper, double encryption technology of image based on scramble operation and phase-shifting digital holography is proposed. For the purpose, we perform first encryption digitally using scramble operation for the to be encrypted image, and perform phase modulation to the first encrypted image. Finally, we get the secondary encryption information through the interference between the phase-shifted reference wave and phase modulated image. The decryption process proceeds in the reverse order of the encryption process. The original image is reconstructed by digitally decoding the two encrypted images through a phase shift digital holography technique that appropriately performs arithmetic processing, phase-demodulating and then using the encryption key information used in the scramble operation. The proposed cryptosystem can recover the original image only if both the key information used in the scramble operation, the distance information used in the phase shift digital holography technique, and the wavelength of the light source are known accurately.