본 논문에서 여러 가지 실험을 통한 결과를 분석한 결과. 인터넷망의 QoS는 어느 정도 일정한 패턴을 가지고 있다는 것을 파악하였다. 첫째 이러한 패턴을 분석함으로써 손실률과 손실 패턴에 따라 재전송 및 FEC(Forward Error Correction)의 정도를 달리하고 시간적 계층부호화(temporal scalability)를 이용하여 비트율을 변경시키는 보다 효율적이고 적응적 QoS 관리 방법을 제시한다. 둘째, MPEG-4의 오류 강인성을 이용한 비디오 패킷 단위의 전송으로 인해 오류 전파를 막고, Network상의 패킷 손실을 디코더에서 오류 은닉을 할 수 있도록 한다. 셋째, 네트워크상의 패킷 손실을 최소화할 수 있는 방법으로 GOP(Group Of Picture) 단위의 전송으로 인한 인터리빙(interleaving) 효과와 FEC를 이용하여 수신측에서 패킷 손실을 정정하고 다소 지연이 발생하지만 손실률을 줄이기 위해 재전송(retransmission) 등을 이용하였다. 마지막으로, 제안된 알고리듬들을 적용한 MPEG-4 스트리밍 서비스를 위한 VOD 시스템을 구현하였다.
본 논문에서는 웹 서버의 부하가 급증하면서 대두된 네트워크 과부하를 해결하기 위한 방법으로 서버분산처리 방식과 RTO(retransmission time out : 재전송타임아웃)간을 조정하는 기법을 이용하였다. 부하 분산을 위한 방법으로는 기존의 NAT 기반의 가상서버 방식과 비슷하나, 기존의 가상서버에서 서버들을 선택하는 스케줄링 방법을 이용하지 않고 네트워크 주소(IP)룰 통한 서버 분산방법을 선택하였다. 이를 위해 Linux 기반의 PC에 라우터론 구축하였고 여기에 실제 IP를 할당하였으며, 라우터를 경유하여 연결된 두개의 서버에는 가상 IP를 할당 내부접속용과 외부접속용으로 나누어 서버 분산이 이루어지게끔 하였다. 이러한 서버 분산은 학교라는 즉. 웹서버의 접속이 내부접속 비율과 외부접속 비율 어느 한쪽으로도 크게 기울지 않는 네트워크 환경을 고려한 것이다. 네트워크의 성능 평가에 있어 가장 기본이 될 수 있는 응답시간은 전송거리와 트래픽량에 비례한다. 이에 외부접속용 서버와 내부접속용 서버 각각에 RTO 값을 다르게 적용시킴으로써 전체적인 Delay의 변화를 확인해 볼 수 있다. 이는 전송거리가 길 경우 생길 수 있는 패킷 손실을 고려한 것으로 패킷 손실로 인하여 재전송이 이루어질 경우 재전송 time이 RTO를 통하여 이루어지며 이러한 RTO의 적절한 값은 전체적인 응답시간에 영향을 미칠 수 있다는 것에 기인한 것으로 RTO값을 전송거리가 긴 외부접속용 서버에는 전송거리가 짧은 내부접속용 서버에 비해 길게 적응시킴으로써 전체적인 응답시간의 개선을 유도하였다
최근 사물 인터넷(Internet of things) 의 발달에 따라, 스마트 디바이스 간의 네트워크 및 이를 구축할 수 있는 기술에 대한 수요가 급증하고 있다. 이러한 스마트 디바이스 간의 저 전력 저 손실 네트워크(Low power and Lossy network) 환경에서 쓰이는 대표적인 프로토콜로 CoAP(Constrained Application Protocol)가 있으며, 해당 프로토콜은 다양한 네트워크 환경에 유연하게 적용할 수 있도록 패킷 재전송 주기 설정 옵션을 가진다. 하지만 하나의 디바이스에서 네트워크 환경이 패킷 손실 및 지연여부를 구분 할 수 없기 때문에, 네트워크 상태 파악을 위해서는 수신과 응답 양측 디바이스의 패킷 흐름을 확인해야 하는 문제점이 있다. 본 논문에서는 프로토콜의 정보를 기반으로 네트워크 상태를 파악 할 수 있는 새로운 필드 값을 적용하여 CoAP 패킷 재전송 주기를 네트워크 환경의 상태에 따라 동적으로 설정해주는 알고리즘을 제안한다. 제안된 기법은 동적으로 재전송 주기를 설정함으로써, 패킷 손실에 의한 서비스 장애 극복 및 패킷 지연 상황에서의 불필요한 패킷 재전송을 방지하여 에너지 효율성을 향상시키고 서비스 안정성을 보장한다.
In this paper, it is shown that, in DS/CDMA mobile systems, halving or doubling the spreading factor (HSF or DSE) when retransmission is requested possibly improves the throughput. Given transmit power, DSF essentially decreases probability of packet error (PPE) by increasing the signal energy per information bit. It, however, doubles the time duration needed for transmitting the original packet. On the other hand, HSF increases PPE. It, however halves the time duration required to carry the original packet. Thus, the efficiency of HSF or DSF as a retransmission strategy depends on the amount of increased or reduced PPE after HSF or DSF is selected. With achieving given residual error probability (REP) in CDMA systems, the effective throughput is evaluated in this paper to find conditions with which HSF or DSF achieves better performance than using the original one. Analytic results show that HSF or DSF performs better when relatively small or big changes in their PPE's are present, respectively.
본 논문에서는 ICAO (International Civil Aviation Organization)에서 규정한 VDL 모드 3 시스템 계통도와 제원을 구성하여 BER(Bit Error Rate), 전송지연시간, 버스트 재전송율, 그리고 throughput에 대한 성능을 분석하였다. 성능 분석 결과, BER과 전송지연시간, throughput, 버스트 재전송율의 관계를 명확히 정의할 수 있었고, 또한 down link에서 V/D 재전송율과 throughput에 강한 상관이 있음이 판명되었다.
본 논문에서는 무선 네트워크에서 네트워크 코딩을 재전송에 사용했을 때 얻을 수 있는 이득을 계산했다. 먼저 무선 네트워크에서 네트워크 코딩을 재전송에 활용했을 때 얻을 수 있는 전송 실패 확률을 수학적으로 구했고 이에 따른 다이버시티 차수를 노드 숫자와 수신 확률에 따라 변함을 보였다. 전송 실패 확률을 이용하여 전송실패 확률 ${\epsilon}$을 만족시키는 ${\epsilon}$-용량 (${\epsilon}$-outage capacity) 을 구하였고, 네트워크 코딩을 사용했을 때와 안 했을 때의 ${\epsilon}$-용량의 비율을 네트워크 코딩 이득이라 정의하였다. 그리고 네트워크 코딩 이득이 다이버시티 차수의 함수로 표현됨을 보였다. 노드 숫자가 무한하게 많아지게 되면 네트워크 코딩 이득이 점근적으로 $0.25{\epsilon}^{-1}$을 달성할 수 있음을 보였다.
본 논문에서는 802.11b 무선 LAN환경에서 전송 전력을 제어함으로써 통신에 소비되는 전력을 절약할 수 있는 방법을 제안한다. 먼저 실험을 통해 전송 전력의 조절이 성능과 전력 소비 면에서 미치는 영향을 조사하였다. 이를 기초로 하여 TCP의 혼잡 제어 기법과 유사하게 재전송 비율을 암시적인 피드백으로 사용하여 단계적으로 적정 전송 전력을 찾는 방법을 제안하였다. 제안한 방법은 리눅스 시스템에서 구현하여 실험을 하였으며, 실험 결과를 통해 제안한 전송 전력 제어 방법의 타당성 및 실효성을 보였다. 제안한 방법은 통신 성능의 저하 없이 전송 전력을 제어함으로써 전력 소비를 줄일 수 있었다
Collision Management Protocol (CMP)은 매체 접근 제어 (MAC) 방식이 랜덤 접근 (Random Access)인 HomePNA 3.0 비동기 MAC 모드 시스템으로 구성된 네트워크에서 데이터 프레임 전송 시에 발생하는 충돌을 해결하기 위한 프로토콜이다. 이 프로토콜의 특징은 기존 HomePNA 2.0 시스템의 Distributed fair Priority Queueing (DFPQ) 알고리즘이나 802.11 시스템의 Binary Exponential Backoff (BEB) 알고리즘과는 달리 충돌이 발생한 시스템들의 재 전송 순서를 랜덤 확률로서 결정하지 않고, 각 시스템별로 주어진 Collision Signaling Sequence (CSS) 간을 사용하여 순서를 결정한다. 즉, 재 전송 순서를 사전에 정의된 순서로 결정함으로서 평균적인 충돌 횟수를 최소화 할 수 있게 된다. 본 논문에서는 유선 홈 네트워킹 기술인 HomePNA 3.0의 CMP에 대하여 포화(Saturation) 상태에서의 성능을 분석한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권9호
/
pp.3449-3467
/
2015
A broadcast operation is the fundamental transmission technique in mobile ad-hoc networks (MANETs). Because a broadcast operation can cause a broadcast storm, only selected forwarding nodes have the right to rebroadcast a broadcast message among the one-hop and two-hop neighboring nodes of a sender. This paper proposes the maximum intersection self-pruning (MISP) algorithm to minimize broadcasting redundancy. Herein, an example is given to help describe the main concept of MISP and upper bounds of forward node have been derived based on induction. A simulation conducted demonstrated that when conventional blind flooding (BF), self-pruning (SP), an optimized link state routing (OLSR) multipoint relay (MPR) set, and dominant pruning (DP), are replaced with the MISP in executing Strong duplicate address detection (DAD), the performances in terms of the energy consumption, upper bounds of the number of forward nodes, and message complexity have been improved. In addition, to evaluate the performance in reference to the link error probability, Pe, an enhancement was achieved by computing a proposed retransmission limit, S, for error recovery based on this probability. Retransmission limit control is critical for efficient energy consumption of MANET nodes operating with limited portable energy where Strong DAD reacts differently to link errors based on the operational procedures.
무선 센서 네트워크에서 센서 노드들은 제한된 자원을 가지며, 에너지의 대부분을 통신에 소비한다. 대부분의 트래픽이 싱크 노드를 향해 전달되는 형태를 지니므로, 순간적인 네트워크 혼잡 발생 가능성이 높다. 네트워크 혼잡은 패킷의 폐기를 초래하고, 폐기된 패킷의 재전송으로 인하여 에너지가 낭비된다. 특히 싱크 노드로부터 멀리 위치한 센서 노드에서 생성된 패킷의 손실은 추가적인 에너지 소비를 나타낸다. 본 논문에서는 패킷의 우선순위와 혼잡 레벨 뿐만 아니라 홉 카운트를 고려하여 패킷 전송여부를 결정하는 트래픽 제어 메커니즘을 제안한다. 시뮬레이션 방법에 의한 성능 분석을 통해 제안된 메커니즘이 에너지 효율성을 개선한 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.