• 제목/요약/키워드: retinal fundus images

검색결과 16건 처리시간 0.021초

안저영상 해석을 위한 특징영역의 분할에 관한 연구 (A Study on the Feature Region Segmentation for the Analysis of Eye-fundus Images)

  • 강전권;한영환
    • 대한의용생체공학회:의공학회지
    • /
    • 제16권2호
    • /
    • pp.121-128
    • /
    • 1995
  • Information about retinal blood vessels can be used in grading disease severity or as part of the process of automated diagnosis of diseases with ocular menifestations. In this paper, we address the problem of detecting retinal blood vessels and optic disk (papilla) in eye-fundus images. We introduce an algorithm for feature extraction based on Fuzzy Clustering algorithm (fuzzy c-means). A method of finding the optic disk (papilla) is proposed in the eye-fundus images. Additionally, the inrormations such as position and area of the optic disk are extracted. The results are compared to those obtained from other methods. The automatic detection of retinal blood vessels and optic disk in the eye-rundus images could help physicians in diagnosing ocular diseases.

  • PDF

안저영상(眼低映像) 해석(解析)을 위한 특징영성(特徵領域)의 분할(分割)에 관한 연구(硏究) (A Study on the Feature Region Segmentation for the Analysis of Eye-fundus Images)

  • 강전권;김승범;구자일;한영환;홍승홍
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1993년도 추계학술대회
    • /
    • pp.27-30
    • /
    • 1993
  • Information about retinal blood vessels can be used in grading disease severity or as part of the process of automated diagnosis of diseases with ocular menifestations. In this paper, we address the problem of detecting retinal blood vessels and optic disk (papilla) in Eye-fundus images. We introduce an algorithm for feature extraction based on Fuzzy festering(FCM). The results ore compared to those obtained with other methods. The automatic detection of retinal blood vessels and optic disk in the Eye-fundus images could help physicians in diagnosing ocular diseases.

  • PDF

A Novel Fundus Image Reading Tool for Efficient Generation of a Multi-dimensional Categorical Image Database for Machine Learning Algorithm Training

  • Park, Sang Jun;Shin, Joo Young;Kim, Sangkeun;Son, Jaemin;Jung, Kyu-Hwan;Park, Kyu Hyung
    • Journal of Korean Medical Science
    • /
    • 제33권43호
    • /
    • pp.239.1-239.12
    • /
    • 2018
  • Background: We described a novel multi-step retinal fundus image reading system for providing high-quality large data for machine learning algorithms, and assessed the grader variability in the large-scale dataset generated with this system. Methods: A 5-step retinal fundus image reading tool was developed that rates image quality, presence of abnormality, findings with location information, diagnoses, and clinical significance. Each image was evaluated by 3 different graders. Agreements among graders for each decision were evaluated. Results: The 234,242 readings of 79,458 images were collected from 55 licensed ophthalmologists during 6 months. The 34,364 images were graded as abnormal by at-least one rater. Of these, all three raters agreed in 46.6% in abnormality, while 69.9% of the images were rated as abnormal by two or more raters. Agreement rate of at-least two raters on a certain finding was 26.7%-65.2%, and complete agreement rate of all-three raters was 5.7%-43.3%. As for diagnoses, agreement of at-least two raters was 35.6%-65.6%, and complete agreement rate was 11.0%-40.0%. Agreement of findings and diagnoses were higher when restricted to images with prior complete agreement on abnormality. Retinal/glaucoma specialists showed higher agreements on findings and diagnoses of their corresponding subspecialties. Conclusion: This novel reading tool for retinal fundus images generated a large-scale dataset with high level of information, which can be utilized in future development of machine learning-based algorithms for automated identification of abnormal conditions and clinical decision supporting system. These results emphasize the importance of addressing grader variability in algorithm developments.

망막 영상 분석을 위한 두 갈래 분류기 (Two-Branch Classifier for Retinal Imaging Analysis)

  • 오영택;박현진
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.614-616
    • /
    • 2021
  • 세계는 안구 질병 치료, 시력 회복 서비스, 훈련된 안과 전문의의 부족 등 안과 측면에서 어려움에 직면해 있다. 안구 병리를 조기에 발견하고 진단하면 시각 장애를 예방할 수 있다. 하지만 기존의 망막 영상 공개 데이터 세트는 임상에서 발견되는 다양한 질병으로 구성되어 있지 않기 때문에 다양한 안구 질환을 분류하는 방법을 개발하기가 어렵다. 본 연구는 2021 ISBI challenge에서 공개된 데이터 세트인 Retinal Fundus Multi-disease Image Dataset (RFMiD) 을 이용하여 안구 질환을 분류하는 방법을 제안한다. 본 연구의 목표는 망막 이미지를 정상, 비정상 범주로 선별하기 위한 강력하고 일반화 가능한 모델을 개발하는 것이다. 제안된 모델의 성능은 수신자 조작 특성 곡선 아래 면적 점수로 비공개 테스트 데이터 세트에 대해 0.9782의 값을 보여준다.

  • PDF

Automated Detection of Retinal Nerve Fiber Layer by Texture-Based Analysis for Glaucoma Evaluation

  • Septiarini, Anindita;Harjoko, Agus;Pulungan, Reza;Ekantini, Retno
    • Healthcare Informatics Research
    • /
    • 제24권4호
    • /
    • pp.335-345
    • /
    • 2018
  • Objectives: The retinal nerve fiber layer (RNFL) is a site of glaucomatous optic neuropathy whose early changes need to be detected because glaucoma is one of the most common causes of blindness. This paper proposes an automated RNFL detection method based on the texture feature by forming a co-occurrence matrix and a backpropagation neural network as the classifier. Methods: We propose two texture features, namely, correlation and autocorrelation based on a co-occurrence matrix. Those features are selected by using a correlation feature selection method. Then the backpropagation neural network is applied as the classifier to implement RNFL detection in a retinal fundus image. Results: We used 40 retinal fundus images as testing data and 160 sub-images (80 showing a normal RNFL and 80 showing RNFL loss) as training data to evaluate the performance of our proposed method. Overall, this work achieved an accuracy of 94.52%. Conclusions: Our results demonstrated that the proposed method achieved a high accuracy, which indicates good performance.

후유리체박리 환자에서 눈방향전환 초광각안저촬영술의 유용성 (Ultra-wide Field Fundus Photography Using Eye Steering Technique in Patients with Symptomatic Posterior Vitreous Detachment)

  • 김민한;오종현
    • 대한안과학회지
    • /
    • 제59권12호
    • /
    • pp.1160-1165
    • /
    • 2018
  • 목적: 증상이 있는 후유리체박리 환자에서 망막열공을 진단하기 위한 초광각안저촬영기의 눈방향전환 촬영술의 유용성을 알아보고자 하였다. 대상과 방법: 비문증 또는 광시증으로 내원하여 후유리체박리를 진단받은 환자의 의무기록을 후향적으로 조사하였다. 초광각안저촬영술의 눈방향전환 촬영 사진 4장을 이용하여 독립적으로 망막열공을 확인하였고, 눈방향전환 초광각안저촬영술의 망막열공 진단에 대한 민감도와 특이도를 구하였다. 결과: 총 94명의 94안이 연구에 포함되었다. 산동 후 시행한 안저검사에서 42안(45%)이 망막열공을 진단받았다. 망막열공 진단에 대한 눈방향전환 초광각안저촬영술의 민감도는 98% (95% 신뢰구간 88-100%), 특이도는 98% (95% 신뢰구간 90-100%)였다. 전체 망막열공 58개 중에 눈방향전환 초광각안저촬영술에서 상측 28개(97%)와 하측 10개(100%), 비측 6개(100%), 이측 13개(100%)의 망막열공이 확인되었다. 결론: 눈방향전환 초광각안저촬영술은 증상이 있는 후유리체박리 환자에서 망막열공을 진단하는 데 유용하다. 그렇지만 모든 증례에서 산동 후 안저검사를 대체할 수는 없었다.

Optical Design of a Snapshot Nonmydriatic Fundus-imaging Spectrometer Based on the Eye Model

  • Zhao, Xuehui;Chang, Jun;Zhang, Wenchao;Wang, Dajiang;Chen, Weilin;Cao, Jiajing
    • Current Optics and Photonics
    • /
    • 제6권2호
    • /
    • pp.151-160
    • /
    • 2022
  • Fundus images can reflect ocular diseases and systemic diseases such as glaucoma, diabetes mellitus, and hypertension. Thus, research on fundus-detection equipment is of great importance. The fundus camera has been widely used as a kind of noninvasive detection equipment. Most existing devices can only obtain two-dimensional (2D) retinal-image information, yet the fundus of the human eye also has spectral characteristics. The fundus has many pigments, and their different distributions in the eye lead to dissimilar tissue penetration for light waves, which can reflect the corresponding fundus structure. To obtain more abundant information and improve the detection level of equipment, a snapshot nonmydriatic fundus imaging spectral system, including fundus-imaging spectrometer and illumination system, is studied in this paper. The system uses a microlens array to realize snapshot technology; information can be obtained from only a single exposure. The system does not need to dilate the pupil. Hence, the operation is simple, which reduces its influence on the detected object. The system works in the visible and near-infrared bands (550-800 nm), with a volume less than 400 mm × 120 mm × 75 mm and a spectral resolution better than 6 nm.

SKU-Net: Improved U-Net using Selective Kernel Convolution for Retinal Vessel Segmentation

  • Hwang, Dong-Hwan;Moon, Gwi-Seong;Kim, Yoon
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권4호
    • /
    • pp.29-37
    • /
    • 2021
  • 본 논문에서는 안저영상의 다중 스케일 정보를 다루기 위한 딥러닝 기반의 망막 혈관 분할 모델을 제안한다. 제안 모델은 이미지 분할 딥러닝 모델인 U-Net과 선택적 커널 합성곱을 통합한 합성곱 신경망으로 안저영상에서 눈과 관련된 질병을 진단하는데 중요한 정보가 되는 망막 혈관의 다양한 모양과 크기를 갖는 특징 정보를 추출하고 분할한다. 제안 모델은 일반적인 합성곱과 선택적 커널 합성곱으로 구성된다. 일반적인 합성곱 층은 같은 크기 커널 크기를 통해 정보를 추출하는 반면, 선택적 커널 합성곱은 다양한 커널 크기를 갖는 브랜치들에서 정보를 추출하고 이를 분할 주의집중을 통해 적응적으로 조정하여 결합한다. 제안 모델의 성능 평가를 위해 안저영상 데이터인 DRIVE와 CHASE DB1 데이터셋을 사용하였으며 제안 모델은 두 데이터셋에 대하여 F1 점수 기준 82.91%, 81.71%의 성능을 보여 망막 혈관 분할에 효과적임을 확인하였다.

안저 영상에서 헤이지안 알고리즘을 이용한 혈관 검출 (Detection of Retinal Vessels of Fundus Photograph Using Hessian Algorithm)

  • 강호철;김광기;오휘빈;황정민
    • 한국멀티미디어학회논문지
    • /
    • 제12권8호
    • /
    • pp.1082-1088
    • /
    • 2009
  • 망막 질환의 진단에서 안저영상은 환자의 망막 상태에 대한 객관적인 평가와 기록에 중요하다. 특히 혈관의 분석은 당뇨병, 고혈압 등의 진단과 경과 관찰에 매우 중요하다. 혈관 영역을 검출하기 위해 톱-햇(Top-hat) 필터를 사용하여 균일하지 않은 배경 영상을 보상하고, 대비 제한의 적응적 히스토그램 보정(contrast limited adaptive histogram equalization) 방법을 적용하여 대비를 향상시켰다. 영상에 전처리를 한 후 헤이지안 행렬(hessian matrix)을 적용하여 혈관 성분을 검출한 결과 제안된 방법이 기존의 정합 필터(matched filter) 방법보다 약 1.3% 더 정확하였다. 결론으로 제안한 알고리즘은 안저 영상에서 혈관 영역을 검출하는데 있어서 기존 방법에 비해서 향상되었다.

  • PDF

Automatic Segmentation of Retinal Blood Vessels Based on Improved Multiscale Line Detection

  • Hou, Yanli
    • Journal of Computing Science and Engineering
    • /
    • 제8권2호
    • /
    • pp.119-128
    • /
    • 2014
  • The appearance of retinal blood vessels is an important diagnostic indicator of serious disease, such as hypertension, diabetes, cardiovascular disease, and stroke. Automatic segmentation of the retinal vasculature is a primary step towards automatic assessment of the retinal blood vessel features. This paper presents an automated method for the enhancement and segmentation of blood vessels in fundus images. To decrease the influence of the optic disk, and emphasize the vessels for each retinal image, a multidirectional morphological top-hat transform with rotating structuring elements is first applied to the background homogenized retinal image. Then, an improved multiscale line detector is presented to produce a vessel response image, and yield the retinal blood vessel tree for each retinal image. Since different line detectors at varying scales have different line responses in the multiscale detector, the line detectors with longer length produce more vessel responses than the ones with shorter length; the improved multiscale detector combines all the responses at different scales by setting different weights for each scale. The methodology is evaluated on two publicly available databases, DRIVE and STARE. Experimental results demonstrate an excellent performance that approximates the average accuracy of a human observer. Moreover, the method is simple, fast, and robust to noise, so it is suitable for being integrated into a computer-assisted diagnostic system for ophthalmic disorders.