• Title/Summary/Keyword: response transformation

Search Result 496, Processing Time 0.033 seconds

Structural Optimization of Truss with Non-Linear Response Using Equivalent Linear Loads (선형등가하중을 이용한 비선형 거동을 하는 트러스 구조물의 최적설계)

  • Park, Ki-Jong;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.467-474
    • /
    • 2004
  • A numerical method and algorithms is proposed to perform optimization of non-linear response structures. An analytical and numerical method based finite element method is also proposed for the transformation of non-linear response into linear response. Loads transformed from this method are defined as the equivalent linear loads. With the loads and the transformed response, linear static optimization is performed for nonlinear response structure with geometric and/or material non-linearity. The results of the optimization are compared with them of typical non-linear response optimization using finite difference method. The proposed method is very efficient and derives good solution.

Structural Optimization of Truss with Non-Linear Response Using Equivalent Static Loads (등가정하중을 이용한 비선형 거동 트러스 구조물의 최적설계)

  • Park, Ki-Jong;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.999-1004
    • /
    • 2004
  • A numerical method and algorithms is proposed to perform optimization of non-linear response structures. An analytical and numerical method based finite element method is also proposed for the transformation of non-linear response into linear response. Loads transformed from this method are defined as the equivalent linear loads. With the loads and the transformed response, linear static optimization is performed for nonlinear response structure with geometric and/or material non-linearity. The results of the optimization are compared with them of typical non-linear response optimization using finite difference method. The proposed method is very efficient and derives good solution.

  • PDF

A Study on Risk Issues and Policy for Future Society of Digital Transformation: Focusing on Artificial Intelligence (디지털 전환의 미래사회 위험이슈 및 정책적 대응 방향: 인공지능을 중심으로)

  • Koo, Bonjin
    • Journal of Technology Innovation
    • /
    • v.30 no.1
    • /
    • pp.1-20
    • /
    • 2022
  • Digital transformation refers to the economic and social effects of digitisation and digitalisation. Although digital transformation acts as a useful tool for economic/social development and enhancing the convenience of life, it can have negative effects (misuse of personal information, ethical problems, deepening social gaps, etc.). The government is actively establishing policies to promote digital transformation to secure competitiveness and technological hegemony, however, understanding of digital transformation-related risk issues and implementing policies to prevent them are relatively slow. Thus, this study systematically identifies risk issues of the future society that can be caused by digital transformation based on quantitative analysis of media articles big data through the Embedded Topic Modeling method. Specifically, first, detailed issues of negative effects of digital transformation in major countries were identified. Then detailed issues of negative effects of artificial intelligence in major countries and Korea were identified. Further, by synthesizing the results, future direction of the government's digital transformation policies for responding the negative effects was proposed. The policy implications are as follows. First, since the negative effects of digital transformation does not only affect technological fields but also affect the overall society, such as national security, social issues, and fairness issues. Therefore, the government should not only promote the positive functions of digital transformation, but also prepare policies to counter the negative functions of digital transformation. Second, the detailed issues of future social risks of digital transformation appear differently depending on contexts, so the government should establish a policy to respond to the negative effects of digital transformation in consideration of the national and social context. Third, the government should set a major direction for responding negative effects of digital transformation to minimize confusion among stakeholders, and prepare effective policy measures.

Crack identification with parametric optimization of entropy & wavelet transformation

  • Wimarshana, Buddhi;Wu, Nan;Wu, Christine
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.1
    • /
    • pp.33-52
    • /
    • 2017
  • A cantilever beam with a breathing crack is studied to improve the breathing crack identification sensitivity by the parametric optimization of sample entropy and wavelet transformation. Crack breathing is a special bi-linear phenomenon experienced by fatigue cracks which are under dynamic loadings. Entropy is a measure, which can quantify the complexity or irregularity in system dynamics, and hence employed to quantify the bi-linearity/irregularity of the vibration response, which is induced by the breathing phenomenon of a fatigue crack. To improve the sensitivity of entropy measurement for crack identification, wavelet transformation is merged with entropy. The crack identification is studied under different sinusoidal excitation frequencies of the cantilever beam. It is found that, for the excitation frequencies close to the first modal frequency of the beam structure, the method is capable of detecting only 22% of the crack depth percentage ratio with respect to the thickness of the beam. Using parametric optimization of sample entropy and wavelet transformation, this crack identification sensitivity is improved up to 8%. The experimental studies are carried out, and experimental results successfully validate the numerical parametric optimization process.

A fault prevention diagnostic of power transformer using Frequency Response Analysis (주파수 응답 분석(FRA)을 이용한 전력용 변압기 고장예방 진단)

  • Cho, Yun-Haeng;Lim, Tae-Young;Kim, Jong-Seon;Kim, Gi-Il;Ahn, Kwang-Won;Lim, Seong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.463-464
    • /
    • 2011
  • Currently, different kinds of diagnosis and inspection technologies are applied to prevent the internal mechanical transformation of transformers. For example, examination of internal Partial Discharge of transformer, analysis of transformer oil gas, and measurement Frequency Response Analyzer(FRA) are used to diagnose defect. Especially, diagnosis technique through Frequency Response Analyzer(FRA) has been used and developed from 1960, when it was first introduced, till now to become an important tool to examine presence of defect and to prove quality of machines for the most electric machine producers electric power company in the world. However, diagnosis through FRA is still in introduction level in Korea and the application method for FRA is not established yet. For that reason, study about the application of domestic electric installation according to the FRA is needed. It is expected that the study play an important part in the prevention of defect due to the internal transformation of transformer by introducing measurement theory, providing measurement method, and analyzing application cases.

  • PDF

Structural Shape Optimization under Static Loads Transformed from Dynamic Loads (동하중으로부터 변환된 등가정하중을 통한 구조물의 형상최적설계)

  • Park, Ki-Jong;Lee, Jong-Nam;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1262-1269
    • /
    • 2003
  • In structural optimization, static loads are generally utilized although real external forces are dynamic. Dynamic loads have been considered in only small-scale problems. Recently, an algorithm for dynamic response optimization using transformation of dynamic loads into equivalent static loads has been proposed. The transformation is conducted to match the displacement fields from dynamic and static analyses. The algorithm can be applied to large-scale problems. However, the application has been limited to size optimization. The present study applies the algorithm to shape optimization. Because the number of degrees of freedom of finite element models is usually very large in shape optimization, it is difficult to conduct dynamic response optimization with the conventional methods that directly threat dynamic response in the time domain. The optimization process is carried out via interfacing an optimization system and an analysis system for structural dynamics. Various examples are solved to verify the algorithm. The results are compared to the results from static loads. It is found that the algorithm using static loads transformed from dynamic loads based on displacement is valid even for very large-scale problems such as shape optimization.

  • PDF

Functional Analysis of Pepper Cys2/His-Type Zinc-Finger Protein Promoter Region in Response to Bacterial Infection and Abiotic Stresses in Tobacco Using Agrobacterium-Mediated Transient Assay

  • Kim, Sang-Hee;Hwang, Byung-Kook
    • The Plant Pathology Journal
    • /
    • v.21 no.1
    • /
    • pp.39-46
    • /
    • 2005
  • The promoter region flanking the 5’ CAZFP1 coding region was isolated from the genomic DNA of Capsicum annuum. To identify the upstream region of the CAZFP1 gene required for promoter activity, a series of CAZFP1 promoter deletion derivatives was created. Each deletion construct was analyzed by Agrobacterium-mediated transient transformation in tobacco leaves after infection by Pseudomonas syringae pv. tabaci, or treatment with methyl jasmonate (MeJA), ethylene, abscisic acid (ABA), salicylic acid (SA), cold and wounding. Promoter fragments of 685 bp or longer showed 7-fold or greater induction after P. s. pv. tabaci infection and MeJA treatment. The CAZFP1 full-length promoter (-999 bp) also showed 6-fold induction in response to ethylene. The transiently transformed tobacco leaves with the CAZFP1 full length promoter fused-GUS gene showed more than 5-fold induction in response to SA, ABA and cold. These results suggest that the CAZFP1 promoter contains responsive elements for pathogen, MeJA, ethylene, SA, ABA and cold.

Structural Shape Optimization under Static Loads Transformed from Dynamic Loads (동하중으로부터 변환된 등가정하중을 통한 구조물의 형상최적설계)

  • Park, Ki-Jong;Lee, Jong-Nam;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1363-1370
    • /
    • 2003
  • In structural optimization, static loads are generally utilized although real external forces are dynamic. Dynamic loads have been considered in only small-scale problems. Recently, an algorithm for dynamic response optimization using transformation of dynamic loads into equivalent static loads has been proposed. The transformation is conducted to match the displacement fields from dynamic and static analyses. The algorithm can be applied to large-scale problems. However, the application has been limited to size optimization. The present study applies the algorithm to shape optimization. Because the number of degrees of freedom of finite element models is usually very large in shape optimization, it is difficult to conduct dynamic response optimization with the conventional methods that directly threat dynamic response in the time domain. The optimization process is carried out via interfacing an optimization system and an analysis system for structural dynamics. Various examples are solved to verify the algorithm. The results are compared to the results from static loads. It is found that the algorithm using static loads transformed from dynamic loads based on displacement is valid even for very large-scale problems such as shape optimization.

A NEW STOCHASTIC EVALUATION THEORY OF ARBITRARY ACOUSTIC SYSTEM RESPONSE AND ITS APPLICATION TO VARIOUS TYPE SOUND INSULATION SYSTEMS -EQUIVALENCE TRANSFORMATION TOWARD THE STANDARD HERMITE AND/OR LAGUERRE EXPANSION TYPE PROBABILITY EXPRESSIONS

  • Ohta, Mitsuo;Ogawa, Hitoshi
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.692-697
    • /
    • 1994
  • In the actual sound environmental systems, it seems to be essentially difficult to exactly evaluate a whole probability distribution form of its response fluctuation, owing to various types of natural, social and human factors. Up to now, we very often reported two kinds of unified probability density expressions in the standard expansion from of Hermite and Laguerre type orthonormal series to generally evaluate non-Gaussian, non-linear correlation and/or non-stationary properties of the fluctuation phenomenon. However, in the real sound environment, there still remain many actual problems on the necessity of improving the above two standard type probability expressions for practical use. In this paper, first, a central point is focused on how to find a new probabilistic theory of practically evaluating the variety and complexity of the actual random fluctuations, especially through introducing some equivalence transformation toward two standard probability density expressions mentioned above in the expansion from of Hermite and Laguerre type orthonormal series. Then, the effectiveness of the proposed theory has been confirmed experimentally too by applying it to the actual problems on the response probability evaluation of various sound insulation systems in an acoustic room.

  • PDF

Feasibility study on an acceleration signal-based translational and rotational mode shape estimation approach utilizing the linear transformation matrix

  • Seung-Hun Sung;Gil-Yong Lee;In-Ho Kim
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • In modal analysis, the mode shape reflects the vibration characteristics of the structure, and thus it is widely performed for finite element model updating and structural health monitoring. Generally, the acceleration-based mode shape is suitable to express the characteristics of structures for the translational vibration; however, it is difficult to represent the rotational mode at boundary conditions. A tilt sensor and gyroscope capable of measuring rotational mode are used to analyze the overall behavior of the structure, but extracting its mode shape is the major challenge under the small vibration always. Herein, we conducted a feasibility study on a multi-mode shape estimating approach utilizing a single physical quantity signal. The basic concept of the proposed method is to receive multi-metric dynamic responses from two sensors and obtain mode shapes through bridge loading test with relatively large deformation. In addition, the linear transformation matrix for estimating two mode shapes is derived, and the mode shape based on the gyro sensor data is obtained by acceleration response using ambient vibration. Because the structure's behavior with respect to translational and rotational mode can be confirmed, the proposed method can obtain the total response of the structure considering boundary conditions. To verify the feasibility of the proposed method, we pre-measured dynamic data acquired from five accelerometers and five gyro sensors in a lab-scale test considering bridge structures, and obtained a linear transformation matrix for estimating the multi-mode shapes. In addition, the mode shapes for two physical quantities could be extracted by using only the acceleration data. Finally, the mode shapes estimated by the proposed method were compared with the mode shapes obtained from the two sensors. This study confirmed the applicability of the multi-mode shape estimation approach for accurate damage assessment using multi-dimensional mode shapes of bridge structures, and can be used to evaluate the behavior of structures under ambient vibration.