• Title/Summary/Keyword: response prediction

Search Result 1,350, Processing Time 0.033 seconds

Application of SWAT-CUP for Streamflow Auto-calibration at Soyang-gang Dam Watershed (소양강댐 유역의 유출 자동보정을 위한 SWAT-CUP의 적용 및 평가)

  • Ryu, Jichul;Kang, Hyunwoo;Choi, Jae Wan;Kong, Dong Soo;Gum, Donghyuk;Jang, Chun Hwa;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.347-358
    • /
    • 2012
  • The SWAT (Soil and Water Assessment Tool) should be calibrated and validated with observed data to secure accuracy of model prediction. Recently, the SWAT-CUP (Calibration and Uncertainty Program for SWAT) software, which can calibrate SWAT using various algorithms, were developed to help SWAT users calibrate model efficiently. In this study, three algorithms (GLUE: Generalized Likelihood Uncertainty Estimation, PARASOL: Parameter solution, SUFI-2: Sequential Uncertainty Fitting ver. 2) in the SWAT-CUP were applied for the Soyang-gang dam watershed to evaluate these algorithms. Simulated total streamflow and 0~75% percentile streamflow were compared with observed data, respectively. The NSE (Nash-Sutcliffe Efficiency) and $R^2$ (Coefficient of Determination) values were the same from three algorithms but the P-factor for confidence of calibration ranged from 0.27 to 0.81 . the PARASOL shows the lowest p-factor (0.27), SUFI-2 gives the greatest P-factor (0.81) among these three algorithms. Based on calibration results, the SUFI-2 was found to be suitable for calibration in Soyang-gang dam watershed. Although the NSE and $R^2$ values were satisfactory for total streamflow estimation, the SWAT simulated values for low flow regime were not satisfactory (negative NSE values) in this study. This is because of limitations in semi-distributed SWAT modeling structure, which cannot simulated effects of spatial locations of HRUs (Hydrologic Response Unit) within subwatersheds in SWAT. To solve this problem, a module capable of simulating groundwater/baseflow should be developed and added to the SWAT system. With this enhancement in SWAT/SWAT-CUP, the SWAT estimated streamflow values could be used in determining standard flow rate in TMDLs (Total Maximum Daily Load) application at a watershed.

Dynamic Characteristics Analysis of Spherical Shell with Initial Deflection(I) (초기 처짐을 갖는 Spherical Shell의 동적 특성에 관한 연구 (I) -기하학적 형상에 따른 동적 특성-)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.3
    • /
    • pp.113-121
    • /
    • 1998
  • The widespread use of thin shell structures has created a need for a systematic method of analysis which can adequately account for arbitrary geometric form. Therefore, the stress analysis of thin shell has been one of the more challenging areas of structural mechanics. The analysis of axisymmetric spherical shell is almost an every day occurrence in many industrial applications. A reliable and accurate finite element analysis procedure for such structures was needed. In general, the shell structures designed according to quasi-static analysis may fail under conditions of dynamic loading. For a more realistic prediction on the load carrying capacity of these shell, in addition to the dynamic effect, consideration should also include other factors such as nonlinearities in both material and geometry since these factors, in different manner, may also affect the magnitude of this capacity. The objective of this paper is to demonstrate the dynamic characteristics of spherical Shell. For these purpose, the spherical shell subjected to uniformly distributed step load was analyzed for its large displacements elasto-viscoplastic dynamic response. The results for the dynamic characteristics of spherical shell in the cases under various conditions of base-radius/central height(a/H) and thickness/shell radius(t/R) were summarized as follows: 1. The dynamic characteristics with a/H, 1) As the a/H increases, the amplitude of displacement increased. 2) The values of displacement Dynamic Magnification Factor (DMF) range from 2.9 to 6.3 in the crown of shell and the values of factor in the mid-point of shell range from 1.8 to 2.6. 3) As the a/H increases, the values of DMF in the crown of shell is decreased rapidly but the values of DMF in mid-point of shell is increased gradually. 4) The values of DMF of hoop-stresses range from 3.6 to 6.8 in the crown of shell and the values of factor in the mid-point of shell range from 2.3 to 2.6, the values of DMF of stress were larger than that of displacement. 2. The dynamic characteristics with t/R, 1) With the decrease of thickness of shell decreses, the amplitude of the displacement and the period increased. 2) The values of DMF of the displacement were range from 2.8 to 3.6 in the crown of shell and the values of factor in the mid-point of shell were range from 2.1 to 2.2.

  • PDF

Axial Load Capacity Prediction of Single Piles in Clay and Sand Layers Using Nonlinear Load Transfer Curves (비선형 하중전이법에 의한 점토 및 모래층에서 파일의 지지력 예측)

  • Kim, Hyeongjoo;Mission, Joseleo;Song, Youngsun;Ban, Jaehong;Baeg, Pilsoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.45-52
    • /
    • 2008
  • The present study has extended OpenSees, which is an open-source software framework DOS program for developing applications to idealize geotechnical and structural problems, for the static analysis of axial load capacity and settlement of single piles in MS Windows environment. The Windows version of OpenSees as improved by this study has enhanced the DOS version from a general purpose software program to a special purpose program for driven and bored pile analysis with additional features of pre-processing and post-processing and a user friendly graphical interface. The method used in the load capacity analysis is the numerical methods based on load transfer functions combined with finite elements. The use of empirical nonlinear T-z and Q-z load transfer curves to model soil-pile interaction in skin friction and end bearing, respectively, has been shown to capture the nonlinear soil-pile response under settlement due to load. Validation studies have shown the static load capacity and settlement predictions implemented in this study are in fair agreement with reference data from the static loading tests.

  • PDF

Prediction of Brobchodilator Response by Using $FEF_{25{\sim}75%}$ in Adult Patient with a Normal Spirometry Result (정상 폐활량을 보이는 성인 환자에서 $FEF_{25{\sim}75%}$를 통한 기관지확장제 반응의 예견)

  • Park, Se-Hwan;Lee, Seung-Yup;Kang, Seung-Mo;Seon, Choon-Sik;Kim, Hyun-Kyung;Lee, Byoung-Hoon;Lee, Jae-Hyung;Kim, Sang-Hoon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.71 no.3
    • /
    • pp.188-194
    • /
    • 2011
  • Background: When patients with chronic respiratory symptoms have a normal spirometry result, it is not always easy to consider bronchial asthma as the preferential diagnosis. Forced expiratory flow between 25% and 75% of vital capacity ($FEF_{25{\sim}75%}$) is known as a useful diagnostic value of small airway diseases. However, it is not commonly used, because of its high individual variability. We evaluated the pattern of bronchodilator responsiveness (BDR) and the correlation between $FEF_{25{\sim}75%}$ and BDR in patients with suspicious asthma and normal spirometry. Methods: Among patients with suspicious bronchial asthma, 440 adult patients with a normal spirometry result (forced expiratory volume in one second [$FEV_1$]/forced vital capacity [FVC] ${\geq}70%$ & $FEV_1%$ predicted ${\geq}80%$) were enrolled. We divided this group into a positive BDR group (n=43) and negative BDR group (n=397), based on the result of BDR. A comparison was carried out of spirometric parameters with % change of $FEV_1$ after bronchodilator (${\Delta}FEV_1%$). Results: Among the 440 patients with normal spirometry, $FEF_{25{\sim}75%}%$ predicted were negatively correlated with ${\Delta}FEV_1%$ (r=-0.22, p<0.01), and BDR was positive in 43 patients (9.78%). The means of $FEF_{25{\sim}75%}%$ predicted were $64.0{\pm}14.5%$ in the BDR (+) group and $72.9{\pm}20.8%$ in the BDR (-) group (p<0.01). The negative correlation between $FEF_{25{\sim}75%}%$ predicted and ${\Delta}FEV_1%$ was stronger in the BDR (+) group (r=-0.38, p=0.01) than in the BDR (-) group (r=-0.17, p<0.01). In the ROC curve analysis, $FEF_{25{\sim}75%}$ at 75% of predicted value had 88.3% sensitivity and 40.3% specificity for detecting a positive BDR. Conclusion: BDR (+) was not rare in patients with suspicious asthma and normal spirometry. In these patients, $FEF_{25{\sim}75%}%$ predicted was well correlated with BDR.

Nomogram to predict the number of oocytes retrieved in controlled ovarian stimulation

  • Moon, Kyoung Yong;Kim, Hoon;Lee, Joong Yeup;Lee, Jung Ryeol;Jee, Byung Chul;Suh, Chang Suk;Kim, Ki Chul;Lee, Won Don;Lim, Jin Ho;Kim, Seok Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.43 no.2
    • /
    • pp.112-118
    • /
    • 2016
  • Objective: Ovarian reserve tests are commonly used to predict ovarian response in infertile patients undergoing ovarian stimulation. Although serum markers such as basal follicle-stimulating hormone (FSH) or random $anti-M{\ddot{u}}llerian$ hormone (AMH) level and ultrasonographic markers (antral follicle count, AFC) are good predictors, no single test has proven to be the best predictor. In this study, we developed appropriate equations and novel nomograms to predict the number of oocytes that will be retrieved using patients' age, serum levels of basal FSH and AMH, and AFC. Methods: We analyzed a database containing clinical and laboratory information of 141 stimulated in vitro fertilization (IVF) cycles performed at a university-based hospital between September 2009 and December 2013. We used generalized linear models for prediction of the number of oocytes. Results: Age, basal serum FSH level, serum AMH level, and AFC were significantly related to the number of oocytes retrieved according to the univariate and multivariate analyses. The equations that predicted the number of oocytes retrieved (log scale) were as follows: model (1) $3.21-0.036{\times}(age)+0.089{\times}(AMH)$, model (2) $3.422-0.03{\times}(age)-0.049{\times}(FSH)+0.08{\times}(AMH)$, model (3) $2.32-0.017{\times}(age)+0.039{\times}(AMH)+0.03{\times}(AFC)$, model (4) $2.584-0.015{\times}(age)-0.035{\times}(FSH)+0.038{\times}(AMH)+0.026{\times}(AFC)$. model 4 showed the best performance. On the basis of these variables, we developed nomograms to predict the number of oocytes that can be retrieved. Conclusion: Our nomograms helped predict the number of oocytes retrieved in stimulated IVF cycles.

Sunken Ship Precision Image Analysis Using Multi-Beam Echo Sounding Data (다중빔음향측심 자료를 이용한 침몰선박 정밀영상 분석 연구)

  • Lee, Seung-Hyun;Seo, Young Kyo;Suh, Jae-Joon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.863-868
    • /
    • 2016
  • In this study, the precise shapes of sunken ships and information on seafloor topography were analyzed using data obtained from a multi-beam echo sounder. The state of each sunken ship was analyzed by processing diverse imagery data which was compared with data obtained from past investigations to determine changes in the state and circumjacent seafloor topography. Apparent changes in the seafloor topography around one sunken ship, the "Pacific Friend", were found from stern to bow as a result of continued submarine erosion and sedimentation. In the case of sunken ship "No. 7 Haeseong", the partial collapse of the bow was revealed in the seabed images captured in 2015, though it had still been intact in images captured during the Korea Hydrographic and Oceanographic Agency's investigation in 2011. This partial collapse was presumed to have resulted from the effects of continued tidal currents, the cargo load of the ship and continued corrosion of the ship over a long time on the seabed. Continuous monitoring of residual fuel inside the ship is necessary to avoid leakage and potential marine pollution. By conducting image analysis on these sunken ships, it has been determined that the structural safety of the ships is seriously influenced by tidal currents and seafloor topography, while the hulls will be continuously changed by corrosion. As a result, it can be concluded that the development of prediction and response techniques that take into consideration residual fuel leakage and environmental changes according to the geological characteristics of sunken ships is necessary.

Probabilistic Models to Predict the Growth Initiation Time for Pseudomonas spp. in Processed Meats Formulated with NaCl and NaNO2

  • Jo, Hyunji;Park, Beomyoung;Oh, Mihwa;Gwak, Eunji;Lee, Heeyoung;Lee, Soomin;Yoon, Yohan
    • Food Science of Animal Resources
    • /
    • v.34 no.6
    • /
    • pp.736-741
    • /
    • 2014
  • This study developed probabilistic models to determine the initiation time of growth of Pseudomonas spp. in combinations with $NaNO_2$ and NaCl concentrations during storage at different temperatures. The combination of 8 NaCl concentrations (0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, and 1.75%) and 9 $NaNO_2$ concentrations (0, 15, 30, 45, 60, 75, 90, 105, and 120 ppm) were prepared in a nutrient broth. The medium was placed in the wells of 96-well microtiter plates, followed by inoculation of a five-strain mixture of Pseudomonas in each well. All microtiter plates were incubated at 4, 7, 10, 12, and $15^{\circ}C$ for 528, 504, 504, 360 and 144 h, respectively. Growth (growth initiation; GI) or no growth was then determined by turbidity every 24 h. These growth response data were analyzed by a logistic regression to produce growth/no growth interface of Pseudomonas spp. and to calculate GI time. NaCl and $NaNO_2$ were significantly effective (p<0.05) on inhibiting Pseudomonas spp. growth when stored at $4-12^{\circ}C$. The developed model showed that at lower NaCl concentration, higher $NaNO_2$ level was required to inhibit Pseudomonas growth at $4-12^{\circ}C$. However, at $15^{\circ}C$, there was no significant effect of NaCl and $NaNO_2$. The model overestimated GI times by $58.2{\pm}17.5$ to $79.4{\pm}11%$. These results indicate that the probabilistic models developed in this study should be useful in calculating the GI times of Pseudomonas spp. in combination with NaCl and $NaNO_2$ concentrations, considering the over-prediction percentage.

Development of Predictive Growth Model of Imitation Crab Sticks Putrefactive Bacteria Using Mathematical Quantitative Assessment Model (수학적 정량평가모델을 이용한 게맛살 부패균의 성장 예측모델의 개발)

  • Moon, Sung-Yang;Paek, Jang-Mi;Shin, Il-Shik
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.1012-1017
    • /
    • 2005
  • Predictive growth model of putrefactive bacteria of surimi-based imitation crab in the modified surimi-based imitation crab (MIC) broth was investigated. The growth curves of putrefactive bacteria were obtained by measuring cell number in MIC broth under different conditions (Initial cell number, $1.0{\times}10^2,\;1.0{\times}10^3$ and $1.0{\times}10^4$ colony forming unit (CFU)/mL; temperature, $15^{\circ}C,\;20^{\circ}C\;and\;25^{\circ}C$) and applied them to Gompertz model. The microbial growth indicators, maximum specific growth rate constant (k), lag time (LT) and generation time (GT), were calculated from Gompertz model. Maximum specific growth rate (k) of putrefactive bacteria was become fast with rising temperature and fastest at $25^{\circ}C$. LT and GT were become short with rising temperature and shortest at $25^{\circ}C$. There were not significant differences in k, LT and GT by initial cell number (p>0.05). Polynomial model, $k=-0.2160+0.0241T-0.0199A_0$, and square root model, $\sqrt{k}=0.02669$ (T-3.5689), were developed to express the combination effects of temperature and initial cell number, The relative coefficient of experimental k and predicted k of polynomial model was 0.87 from response surface model. The relative coefficient of experimental k and predicted k of square root model was 0.88. From above results, we found that the growth of putrefactive bacteria was mainly affected by temperature and the square root model was more credible than the polynomial model for the prediction of the growth of putrefactive bacteria.

A Prediction and Analysis for Functional Change of Ecosystem in South Korea (생태계 용역가치를 이용한 대한민국 생태계의 기능적 변화 예측 및 분석)

  • Kim, Jin-Soo;Park, So-Young
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.2
    • /
    • pp.114-128
    • /
    • 2013
  • Rapid industrialization and economic growth have led to serious problems including reduced open space, environmental degradation, traffic congestion, and urban sprawl. These problems have been exacerbated by the absence of effective conservation and governance, and have resulted in various social conflicts. In response to these challenges, many scholar and government hope to achieve sustainable development through the establishment and management of environment-friendly planning. For this purpose, we would like to analyze functional change for ecosystem by future land-use/cover changes in South Korea. Toward this goal, we predicted land-use/cover changes from 2010 to 2060 using the future population of Statistics Korea and urban growth probability map created by logistic regression analysis and analyzed ecosystem service value using costanza's coefficient. In the case of scenario 1, ecosystem service value represented 6,783~7,092 million USD. In the case of scenario 2, ecosystem represented 6,775~7,089 million USD, 2.9~7.6 million USD decreased compared by scenario 1. This was the result of area reduction for farmland and wetland which have high environmental value relatively according to urban growth by development point of view. The results of this analysis indicate that environmentally sustainable systems and urban development must be applied to achieve sustainable development and environmental protection. Quantitative analysis of environmental values in accordance with environmental policy can help inform the decisions of policy makers and urban developers. Furthermore, forecasting urban growth based on future demand will provide more precise predictive analysis.

Prediction of Preliminary Pogo Instability on a Space Launch Vehicle (예비설계 단계 우주발사체의 공급/추진계 모델을 이용한 포고 불안정성 예측)

  • Lee, SangGu;Sim, JiSoo;Shin, SangJoon;Seo, Yongjun;Ann, Sungjun;Song, Huiseong;Kim, Youdan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.64-72
    • /
    • 2017
  • The longitudinal dynamic instability which can occur in the fueling process of a space launch vehicle is called pogo. It is caused by coupling between the fuselage and propulsion system and they would be formed as a closed-loop system. so that the amplitude of the response may increase or decrease. In this paper, a mathematical model which is applicable to the systematic pogo analysis of a general launch vehicle is developed for an example of space shuttle. The formulations are composed of the linearized second-order differential equation for the propulsion system, and of the pressure, weight displacement, and generalized displacement. Those are important parameters for pogo analysis, are derived through eigenvalue analysis. By the formulation suggested in this paper, it is expected that mathematical modeling method of the pogo system can be obtained and systematic pogo stability analysis for any launch vehicle will be enabled.