• Title/Summary/Keyword: respirometry

Search Result 22, Processing Time 0.025 seconds

Treatability Tests for the Bioremediation of Unsanitary Landfill Waste Soils

  • Park, Sung-Chan;Lee, Young-Hee;Oh, Young-Sook
    • Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.169-173
    • /
    • 2003
  • A treatability investigation was conducted to determine if landfarming would be effective for the remediation of unsanitary landfill waste soils. Calculations based on biodegradable organic carbon contents and initial CO$_2$ evolution rates revealed that landfarming has a high potential for landfill site remediation and that the optimum strategy for bioremediation is site-specific.

A Study of Organic Matter Fraction Method of the Wastewater by using Respirometry and Measurements of VFAs on the Filtered Wastewater and the Non-Filtered Wastewater (여과한 하수와 하수원액의 VFAs 측정과 미생물 호흡률 측정법을 이용한 하수의 유기물 분액 방법에 관한 연구)

  • Kang, Seong-wook;Cho, Wook-sang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.1
    • /
    • pp.58-72
    • /
    • 2009
  • In this study, the organic matter and biomass was characterized by using respirometry based on ASM No.2d (Activated Sludge Model No.2d). The activated sludge models are based on the ASM No.2d model, published by the IAWQ(International Association on Water Quality) task group on mathematical modeling for design and operation of biological wastewater treatment processes. For this study, OUR(Oxygen Uptake Rate) measurements were made on filtered as well as non-filtered wastewater. Also, GC-FID and LC analysis were applied for the estimation of VFAs(Volatile Fatty Acids) COD(S_A) in slowly bio-degradable soluble substrates of the ASM No.2d. Therefore, this study was intended to clearly identify slowly bio-degradable dissolved materials(S_S) and particulate materials(X_I). In addition, a method capable of determining the accurate time to measure non-biodegradable COD(S_I), by the change of transition graphs in the process of measuring microbial OUR, was presented in this study. Influent fractionation is a critical step in the model calibrations. From the results of respirometry on filtered wastewater, the fraction of fermentable and readily biodegradable organic matter(S_F), fermentation products(S_A), inert soluble matter(S_I), slowly biodegradable matter(X_S) and inert particular matter(X_I) was 33.2%, 14.1%, 6.9%, 34.7%, 5.8%, respectively. The active heterotrophic biomass fraction(X_H) was about 5.3%.

Nitrification process analysis by respirometry in a sequencing batch reactor (호흡률을 이용한 연속회분식반응조의 질산화 공정 해석)

  • Kim, Donghan;Kim, Sunghong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.1
    • /
    • pp.55-62
    • /
    • 2019
  • The respirometric technique has been used to analyze the nitrification process in a sequencing batch reactor(SBR) treating municipal wastewater. Especially the profile of the respiration rate very well expressed the reaction characteristics of nitrification. As the nitrification process required a significant amount of oxygen for nitrogen oxidation, the respiration rate due to nitrification was high. The maximum nitrification respiration rate, which was about $50mg\;O_2/L{\cdot}h$ under the period of sufficient nitrification, was related directly to the nitrification reaction rate and showed the nitrifiers activity. The growth rate of nitrifiers is the most critical parameter in the design of the biological nutrient removal systems. On the basis of nitrification kinetics, the maximum specific growth rate of nitrifiers in the SBR was estimated as $0.91d^{-1}$ at $20^{\circ}C$, and the active biomass of nitrifiers was calculated as 23 mg VSS/L and it was about 2% of total biomass.

Assessment of the Organic and Nitrogen Fractions in the Sewage of the Different Sewer Network Types by Respirometric Method (미생물 호흡률 측정에 의한 관거시스템 유형별 하수의 기질 분율 평가)

  • Park, Jong-Bu;Hur, Hyung-Woo;Kang, Ho;Chang, Sung-Oun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.8
    • /
    • pp.649-654
    • /
    • 2009
  • Respirometric analysis of domestic sewage by measuring oxygen uptake rate(OUR) was carried out for the experimental assessment of the organic and biomass fractions. The data of the organic and biomass fractions in sewage is essential for the activated sludge model to optimize the biological treatment plant. As a result of this study, the fractions of readily biodegradable substrate($S_S$), slowly biodegradable substrate($X_S$), inert soluble substrate($S_I$), inert particular substrate($X_I$) and heterotrophic biomass($X_{HAB}$) were about 26.6%, 41.5%, 8.5%, 14.7% and 8.7% on the basis of chemical oxygen demand($COD_{Cr}$), respectively. And the fractions of nitrogen were also studied. The fractions of soluble nitrate nitrogen($S_{NO}$), soluble ammonia nitrogen($S_{NH}$), soluble nonbiodegradable organic nitrogen($S_{NI}$), soluble biodegradable organic nitrogen($S_{ND}$) and slowly biodegradable organic nitrogen($X_{ND}$) were about 3.7%, 64.9%, 4.7%, 9.4% and 17.4%, respectively.

Automatic Control Of Dissolved Oxygen In Activated Sludge Aeration Tank

  • Park, Kwang-Soo;Heo, Nam-Hyo;Lee, Hae-Goon;Han, Gee-Baek;Kim, Chang-Won
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.2
    • /
    • pp.113-119
    • /
    • 1999
  • The quality of the effluent from an activated sludge aeration tank can deteriorate when the substrate removal rate decreases due to an abrupt reduction in the DO concentration, which is affected by such operating conditions as the loading rate, temperature, wastewater composition, and so on. In this research, a DO control system that includes a PI (proportional-integral) controller/Hiraoka controller was developed and applied to a pilot-scale activated sludge process, then its acceptability was estimated. The applicability of the respiration rate to DO control was also estimated. The respiration rate indicated a variety of input organic loading rates, which is the main disturbance to the DO concentration in an aeration tank. When the influent concentration incrementally decreased and increased between CODcr 1,000 mg/l and 100 mg/l, the control system with a PI controller exhibited a good llperformance-the average DO concentrations were 2.00$\pm$0.14 mg/l and 1.88$\pm$0.15 mg/l (set value was 2.0 mg/l), respectively, and the settling time was just 10 minites. When the control system was operated for 4 days, the DO concentration was 1.99$\pm$0.18 mg/l and 32.6% of the air flowrate was saved. However, the fluctuations in the respiration rates and air flowrates were severe, which could be harmful to the stability of the biomass and mechanical stability of the blower. A possible approach to solve this problem may be the simultaneous control of the loading rate and DO concentration.

  • PDF

Biodegradation of Medium-chain-length Polyhydroxyalkanoates by Pseudomonas sp. RY-1 (Pseudomonas sp. RY-1에 의한 Medium-chain-length Polyhydroxyalkanoates의 생분해)

  • 류강은;김영백;양영기;이영하
    • Korean Journal of Microbiology
    • /
    • v.36 no.2
    • /
    • pp.84-90
    • /
    • 2000
  • Biodegradation of vanous medium-chain-length polyhydroxyalkanoates (MCL-PHAs) by an extracellular depolymerase system from Pseudomonas sp. RY-1 was investigated under laboratoly conditions. The degradation rate of the polymers was determined by quantitative clem zone technique, enzyme (turbidity) assay, and respirometry assay. Although the enzyme system secreted by Pscudomor~as sp. RY-1 was capable of degrading all MCL-PHAs tested. its secretion was influenced by the availability of secondary carbon sources. The rate of enzymatic degradation of MCL-PHAs was dependent upou the monomeric composition of the polyesters and reduced as the chain lengths of the monomer m t s in the polyesters increased. MCL-PHAs containing C-even monomer units showed faster degradation rate than MCL-PHAs containing C-odd monomer units. Respiration rates of MCL-PHAs with C-even monomer uuts were also much faster than those of MCL-PHAs with C-odd monomer units. The degmdation rate of MCL-PHAs bearing unsaturated substituents was faster than that of mcl-PHAs without functional substituents, which is suggesting the correlation between the degradation rate and the crystallinity of MCL-PHAs.

  • PDF

Comparison of tolerance of red seabream, Pagrus major exposed to hypoxia with body size (저산소에 노출된 참돔(Pagrus major)의 개체 크기에 따른 내성 비교)

  • Ji-Do Han;Heung-Yun Kim
    • Journal of fish pathology
    • /
    • v.36 no.2
    • /
    • pp.379-388
    • /
    • 2023
  • Experiments were performed to investigate hypoxia tolerance with body size of red seabream (Pagrus major) at 24℃. The rate of oxygen consumption was measured at an interval of 10 min using automated intermittent-flow respirometry. The weight-specific standard metabolic rate (SMR, mg O2 kg-1hr-1) and critical oxygen saturation (Scrit, % air saturation) of the fish were measured under normoxic condition and progressive hypoxia with 0.6-786 g of fish weight (W), respectively. SMR typically decreased with increasing body weight based on SMR=351.59·W-0.195 (r2=0.934). Scrit was higher in larger fish than those of smaller fish in the range of 17.3-24.4%. The result of this study suggests that the smaller seabream can withstand in hypoxic waters better than the larger ones.

Estimation of Acidic Wastewater Toxicity on the Activated Sludge (활성슬러지에 미치는 산폐수의 독성도 예측)

  • Choi, Kwang-Soo;Ko, Joo-Hyung;Jang, Won-Ho;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2175-2185
    • /
    • 2000
  • Respiration rate should be a reasonable state variable for the activated sludge and could be used to simulate the performance of the activated sludge process. Toxic materials are classified into three groups, competitive, noncompetitive and uncompetitive. They increase/decrease the half saturation coefficient or specific growth rate. that means decreasing of the substrate removal capacity. In this research, a pilot-scale activated sludge process was operated under extended aeration method, and a representative noncompetitive inhibitor, acidic wastewater was applied to establish a respirometry-based toxicity model. Using this model. the correlation coefficient between measured and calculated respiration rate was 0.96 when acidic wastewater(pH 3.9~5.5) was introduced continuously to the aeration tank. Even though respiration rate was decreased by toxic effect of acidic wastewater, effluent substrate concentration represented to COD was deteriorated just a little bit. It might be caused by the low ratio of readily biodegradable substrate in the input substrate. Reduction of respiration rate by decreasing of input substrate concentration was much lower than that by acidic wastewater, and hence it was estimated that the possibility of false toxic alarm caused by decreasing of substrate concentration should be low.

  • PDF

Oxygen Consumption of Far Eastern Catfish, Silurus asotus, on the Different Water Temperatures and Photoperiods (참메기, Silurus asotus의 수온과 광주기 변화에 따른 산소 소비량)

  • JO Jae-Yoon;KIM Youhee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.1
    • /
    • pp.56-61
    • /
    • 1999
  • Oxygen consumption rate of Far eastern catfish, Silurus asotus, weighing 280g, was measured using continuous flow respirometry chamber linked computer monitoring system. Mean oxygen consumption rates at $15^{\circ}C,\;20^{\circ}C,\;25^{\circ}C$, and $30^{\circ}C$ were ranged in 35.2$\~96.4mg\;O_2/kg$ fish/hr, 78.6$\~127.9mg\;O_2/kg$ fish/hr, 120.1$\~231.7mg\;O_2/kg$ fish/hr, and 197.5$\~352.3mg\;O_2/kg$ fish/hr, respectively. The oxygen consumption rates increased with increasing water temperature (p<0.05). A photoperiod-mediated oxygen consumption rates was higher during the light period than during the darkness (P<0.05). When acclimated with different photoperiods, 24L:0D, 12L:12D, and 0L:24D, the lowest oxygen consumption rate was observed in the continuous darkness (0L:24D). The differences between maximum and minimum oxygen consumption rates oyer 24 hour increased with increasing water temperature and the difference was the highest in 12L:12D. Oxygen consumption rate changed suddenly at dawn and at dusk.

  • PDF

Variations of DOC and Phenolics in Pore-water of Peatlands (이탄습지 공극수내 용존유기탄소와 페놀계열 물질의 변화도)

  • Freeman, Chris;Kim, Seon-Young;Kang, Ho-Jeong
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.4 s.100
    • /
    • pp.306-311
    • /
    • 2002
  • The amount and composition of dissolved organic carbon in wetlands are of great importance for their influence in secondary productivity, various biogeochemical processes, and aquatic ecosystem functions. In the present study, we measured variations of DOC and phenolics concentrations in pore-water of three northern peatlands (bog, fen, and swamp) over a 1-year period. General microbial activity (soil respirometry) and phenol oxidase enzyme activity were determined in the same peatlands to elucidate mechanisms underlying the differences in DOC and phenolics contents. The concentrations of DOC varied 25.5-45.4 (bog),29.2-71.4 (fen), and 13.5-87.6 (swamp) mg/L, while phenolic concentrations ranged 13.3-48.1 (bog), 7.6-29.5(fen) , and 4.9-30.8 (swamp) mg/L. The seasonal variations of DOC and phenolics in the swamp suggest that litterfall may be one of the most important factors for the DOC dynamics in such systems. The lowest microbial activity and phenol oxidase activity were found in the bog, which appears to Induce high percentage of phenolic contents in pore-water from bogs. It is also suggested that not only the DOC concentrations but also composition of DOC is of great importance in wetland biogeochernistry.