Variations of DOC and Phenolics in Pore-water of Peatlands

이탄습지 공극수내 용존유기탄소와 페놀계열 물질의 변화도

  • Freeman, Chris (School of Biological Sciences, University of Wales, Bangor) ;
  • Kim, Seon-Young (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Kang, Ho-Jeong (Department of Environmental Science and Engineering, Ewha Womans University)
  • Published : 2002.12.31

Abstract

The amount and composition of dissolved organic carbon in wetlands are of great importance for their influence in secondary productivity, various biogeochemical processes, and aquatic ecosystem functions. In the present study, we measured variations of DOC and phenolics concentrations in pore-water of three northern peatlands (bog, fen, and swamp) over a 1-year period. General microbial activity (soil respirometry) and phenol oxidase enzyme activity were determined in the same peatlands to elucidate mechanisms underlying the differences in DOC and phenolics contents. The concentrations of DOC varied 25.5-45.4 (bog),29.2-71.4 (fen), and 13.5-87.6 (swamp) mg/L, while phenolic concentrations ranged 13.3-48.1 (bog), 7.6-29.5(fen) , and 4.9-30.8 (swamp) mg/L. The seasonal variations of DOC and phenolics in the swamp suggest that litterfall may be one of the most important factors for the DOC dynamics in such systems. The lowest microbial activity and phenol oxidase activity were found in the bog, which appears to Induce high percentage of phenolic contents in pore-water from bogs. It is also suggested that not only the DOC concentrations but also composition of DOC is of great importance in wetland biogeochernistry.

습지내의 용존유기탄소의 함량과 구성은 이차생산, 다양한 생지화학적 반응, 그리고 수생태계의 기능에 중요한 영향을 미친다. 본 연구에서는 북구이탄습지 (bog, fen, swamp)의 공극수내의 용존유기탄소와 페놀계열 물질의 농도를 1997년도에 1년에 걸쳐 조사하였다. 일반적인 미생물의 활성 (토양 호흡도)와 페놀산화효소의 활성도 측정하여, 용존유기탄소와 페놀계열 물질의 변화에 대한 기작을 밝히고자 했다 용존유기탄소 농도는 25.5-45.4 (bog), 29.2-71.4 (fen), 13.5-87.6 (swamp) mg/L를 보였고, 페놀계열 물질의 경우에는 13.3-45.4 (bog),7.6-29.5 (fen),4.9-30.8 (swamp) mg/L의 변화정도를 보였다. Swamp에서의 계절적인 변화양상을 살펴보면, 낙엽생산이 용존유기탄소의 변화에 많은 영향을 미침을 알 수 있었다 Bog에서의 미생물활성도와 페놀산화효소의 활성이 가장 낮게 나타났는데 이것이 bog내의 높은 페놀계열물질의 농도를 야기시킨 것으로 사료된다. 본 연구의결과는 습지내 용존유기탄소의 양 뿐만 아니라 그 화학적인 구성이 습지 생지화학에서 중요함을 보여주었다.

Keywords

References

  1. Bianchi, T.S., M.E. Freer and R.G. Wetzel. 1996.Temporal and spatial variability, and the role ofdissolved organic carbon (DOC) in methane fluxesfrom the Sabine River floodplain (southeast Texas,USA). Arch. Hydrobiol. 136: 261-287.
  2. Box. 1983. Investigation of the Folin-Ciocalteau Phenolreagent for the determination of polyphenolic substances in natural waters. Water Res. 17: 249-261.
  3. Cole, J.J., N.F. Coraco and B.L. Peierls. 1992. Canphytoplankton maintain a positive carbon balancein a turbid, freshwater, tidal estuary. Limnol.Oceanogr. 37: 1608-1617.
  4. Dalva, M. and T.R. Moore. 1991. Sources and sinks ofdissolved organic carbon in a forested swamp catchment.Biogeochemistry 15: 1-19.
  5. Findlay, S., M.L. Pace, D. Lints, J.J. Cole, N.F. Caracoand B. Peierls. 1991. Weak-coupling of bacterialand algal production in a heterotrophic ecosystem-the Hudson river estuary. Limnol. Oceanogr.36: 268-278.
  6. Freeman, C. and M.A. Lock. 1995. The biofilm polysaccharidematrix: A buffer against changing organicsubstrate supply? Limnol. Oceanogr. 40:273-278.
  7. Freeman, C., N. Ostle and H. Kang. 2001a. Peatlandphenol oxidase: An enzymic ‘latch’ on a global carbonstore. Nature 409: 149.
  8. Freeman C., C.D. Evans, D.T. Monteith, B. Reynoldsand N. Fenner. 2001b. Export of organic carbonfrom peat soils. Nature 412: 785.
  9. Freeman, C., G.B. Nevison, S. Hughes, B. Reynoldsand J. Hudson. 1998. Enzymic involvement in thebiogeochemical responses of a Welsh peatland to arainfall enhancement manipulation. Biol. Fertil.Soils 27: 173-178.
  10. Kang, H. and C. Freeman. 1999. Phosphatase andarylsulphatase activities in wetland soils-Annualvariation and controlling factors. Soil Bio. Biochem.31: 449-454.
  11. Lugo, A.E., S. Brown and M.M. Brinson. 1989. Conceptsin wetland ecology. p. 53-85. In: Ecosystemsof the World Vol. 15, Forested Wetlands (A.E.Lugo, S. Brown and M.M. Brinson, eds). Elsevier,Amsterdam.
  12. Mann, C.J. and R.G. Wetzel. 1995. Dissolved organiccarbon and its utilization in a riverine wetlandecosystem. Biogeochemistry 31: 99-120.
  13. Middelboe, M. and M. Sondergaard. 1993. Bacterioplanktongrowth-yield - seasonal-variations andcoupling to substrate lability and beta-glucosidaseactivity. Appl. Environ. Microbiol. 59: 3916-3921.
  14. Munster, U. 1991. Extracellular enzyme activity ineutrophic and polyhumic lakes. p. 96-122. In:Microbial Enzymes in Aquatic Environments (R.J.Chrost, eds). Springer-Verlag, New York.
  15. Pind, A., C. Freeman and M.A. Lock. 1994. Enzymicdegradation of phenolic materials in peatlandsmeasurementof phenol oxidase activity. PlantSoil 159: 227-231.
  16. Santschi, P.H., J.J. Lenhart and B.D. Honeyman.1997. Heterogeneous processes affecting tracecontaminant distribution in estuaries: The role ofnatural organic matter. Marine Chem. 58: 99-125.
  17. Schiff, S., R. Aravena, E. Mewhinney, R. Elgood, B. Warner, P. Dillon and S. Trumbore. 1998. Precambrian shield wetlands: Hydrologic control of the sources and export of dissolved organic matter. Clim. Change 40: 167-188.
  18. Wetzel, R.G. 1983. Limnology. Saunders College Publishing,Orlando.
  19. Wetzel, R.G. 1992. Gradient dominated ecosystems:Sources and regulatory functions of dissolved organicmatter in freshwater ecosystems. Hydrobiologia229: 181-198.
  20. Willams, C.J., E.A. Shingara and J.B. Yavitt. 2000.Phenol oxidase activity in peatlands in New YorkState: response to summer drought and peat type.Wetlands 20: 416-421.