• Title/Summary/Keyword: resonant sensor

Search Result 215, Processing Time 0.026 seconds

An experimental study on the cooling performance and the phase shift between piston and displacer in the Stirling cryocooler

  • Park, S. J.;Y. J. Hong;Kim, H. B.;D. Y. Koh;B. K. Yu;Lee, K. B.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.111-117
    • /
    • 2003
  • In the design of the split type free displacer Stilting cryocooler the motion of the displacer is very important to decide the cooling capacity, which depends upon the working gas pressure, the swept volume in the compression space and the expansion space, operating frequency, the phase shift between piston and displacer, etc. In this study, Stirling cryocooler actuated by the electric farce of the dual linear motor is designed and manufactured. Cool down characteristics of the cold end with laser displacement sensor in the expander of the Stilting cryocooler is evaluated. The charging pressure was 15kg$_{f}$/$\textrm{cm}^2$ and operating frequency was 50Hz. Input power and the lowest temperature were about 32W and 67K, respectively. And, displacement of the piston is measured by LVDTs (Linear Variable Differential Transformers), displacement of thedisplacer is measured by laser optic method, and phase shift between piston and displacer is discussed. As the peak-to-peak pressure of the compressor was increased, peak-to-peak displacement of the displacer was increased. The peak-to-peak displacement of the displacer increases in the range of 0 - 64.5Hz(resonant frequency of the displacer), but decreases steeply when the operating frequency is bigger than the resonant frequency. Finally when the phase shift between displacements of the Piston and displacer is 45。, operating frequency is optimum and is decided by resonant frequency of the expander, mass and cross section area of the displacer and constant by friction and flow resistance.e.

Design of UHF Band Microstrip Antenna for Recovering Resonant Frequency and Return Loss Automatically (UHF 대역 공진 주파수 및 반사 손실 오토튜닝 마이크로스트립 안테나 설계)

  • Kim, Young-Ro;Kim, Yong-Hyu;Hur, Myung-Joon;Woo, Jong-Myung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.219-232
    • /
    • 2013
  • This paper presents a microstrip antenna which recovers its resonant frequency and impedance shifted automatically by the approach of other objects such as hands. This can be used for telemetry sensor applications in the ultrahigh frequency(UHF) industrial, scientific, and medical(ISM) band. It is the key element that an frequency-reconfigurable antenna could be electrically controlled. This antenna is miniaturized by loading the folded plates at both radiating edges, and varactor diodes are installed between the radiating edges and the ground plane to control the resonant frequency by adjusting the DC bias asymmetrically. Using this voltage-controlled antenna and the micro controller peripheral circuits of reading the returned level, the antenna is designed and fabricated which recovers its resonant frequency and impedance automatically. Designed frequency auto recovering antenna is conformed to be recovered within a few seconds when the resonant frequency and impedance are shifted by the approach of other objects such as hand, metal plate, dielectric and so on.

Sensitivity Characteristics of Side-Polished Fiber Optic UV Sensor with Optical Intensity Variation (측면연마 광섬유형 자외선센서의 광강도 변화에 따른 감도특성)

  • Lee, Dong-Rok;Seo, Gyoo-Won;Yoon, Jong-Kuk;Cho, Kang-Min;Kang, Shin-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.6
    • /
    • pp.53-58
    • /
    • 2004
  • A novel UV sensor was manufactured and characterized using evanescent field coupling between photochromic dye dispersed polymer waveguide and side polished fiber. The spiroxazine (photochromic dye) dispersed polymer was used as planar waveguides. The resonant wavelength was shifted owing to refractive index variation of planar waveguide on exposed UV because of its photo-functional properties. The sensitivities are $1.21{\mu}W/mw$ and $2.75{\mu}W/mw$ when UV intensities increased after exposure times were fixed at 3 seconds and 5 seconds, respectively. Output optical power according to UV intensity increases and saturation time decreases as the intensity of UV radiations increases.

Empirical Characterization of an Air-cored Induction Coil Sensor using Constructional Parameters (Air-cored induction 코일 센서의 실험 기반 고주파 특성 모델링에 대한 연구)

  • Lim, Han-Sang;Kim, In-Joo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.2
    • /
    • pp.1-7
    • /
    • 2010
  • This paper presents empirical equations indicating the high frequency performance characteristics of air-cored induction coil sensors with their constructional parameters. An air-cored induction coil sensor is widely used due to good linearity at low frequency ranges but the sensor has weakness of relatively low sensitivity to the magnetic field. At high frequency ranges, the sensitivity can be dramatically increased, largely depending on the frequency of the injected field, and this property can be a great asset to some electromagnetic inspections, since they utilize the interrogating current with a fixed frequency. The application of this property of the coil sensor requires the estimation of its high frequency performance. We made experiments on the frequency responses of the coil sensors under diverse constructional conditions and, on the basis of the experimental results, the high frequency performance, such as the resonant frequency and the sensitivity at the frequency, was estimated, as a function of the constructional parameters of the coil sensor. The good agreements between experimental and estimated data were reported.

Non-Contact Vital Signal Sensor Based on Impedance Variation of Resonator (공진기의 임피던스 변화에 근거한 비접촉 생체 신호 센서)

  • Kim, Kee-Yun;Kim, Sang-Gyu;Hong, Yunseog;Yook, Jong-Gwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.9
    • /
    • pp.813-821
    • /
    • 2013
  • In this paper, a vital signal sensor based on impedance variation of resonator is presented. Proposed vital signal sensor can detect the vital signal, such as respiration and heart-beat signal. System is composed of resonator, oscillator, surface acoustic wave (SAW) filter, and power detector. The cyclical movement of a dielectric such as a human body, causes the impedance variation of resonator within the near-field range. So oscillator's oscillation frequency variation is effected on resonator's resonant frequency. SAW filter's skirt characteristic of frequency response can be transformed a small amount of frequency deviation to a large variation. Aim to enhance the existing sensor detection range, proposed sensor operates in 870 MHz ISM band, and detect respiration and heart-beat signal at distance of 120 mm.

Avoidance of Internal Resonances in Hemispherical Resonator Assemblies from Fused Quartz Connected by Indium Solder

  • Sarapuloff, Sergii A.;Rhee, Huinam;Park, Sang-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.835-841
    • /
    • 2013
  • Modern solid-state gyroscopes (HRG) with hemispherical resonators from high-purity quartz glass and special surface superfinishing and ultrathin gold coating become the best instruments for precise-grade inertial reference units (IRU) targeting long-term space missions. Designing of these sensors could be a notable contribution into development of Korea as a space nation. In participial, 40mm diameter thin-shell resonator from high-purity fused quartz, fabricated as a single-piece with its supporting stem has been designed, machined, etched, tuned, tested, and delivered by STM Co. (ATS of Ukraine) several years ago; an extremely-high Q-factor (upto 10~20 millions) has been shown. Understanding of the best way how to match such a unique sensor with inner glass assembly of the gyro means how to use the high potential in a maximal extent; and this has become the urgent task. Inner quartz glass assembly has a very thin indium (In) layer soldered the resonator and its silica base (case), but effects of internal resonances between operational modal pair of the shell-cup and its side (parasitic) modes can notable degrade the potential of the sensor as a whole, instead of so low level of resonator's intrinsic losses. Unfortunately, there are special combinations of dimensions of the parts (so-called, "resonant sizes"), when intensive losses of energy occurs. The authors proposed to use the length of stem's fixture as an additional design parameter to avoid such cases. So-called, a cyclic scheme of finite element method (FEM) and ANSYS software were employed to estimate different combinations of gyro assembly parameters. This variant has no mismatches of numerical origin due to FEM's discrete mesh. The optimum length and dangerous "resonant lengths" have been found. The special attention has been paid to analyses of 3D effects in a cup-stem transient zone, including determination of a difference between the positions of geometrical Pole of the resonant hemisphere and of its "dynamical Pole", i.e., its real zone of oscillation node. Boundary effects between the shell (cup) and 3D short "beams" (inner and outer stems) have been ranged. The results of the numerical experiments have been compared with the classic model of a quasi-hemispherical shell band with inextensional midsurface, and the solution using Rayleigh's functions of the $1^{st}$ and $2^{nd}$ kinds. To guarantee the truth of the recommended sizes to a designer of the real device, the analytical and FEM results have been compared with experimental data for a party of real resonators. The consistency of the results obtained by different means has been shown with errors less than 5%. The results notably differ from the data published earlier by different researchers.

  • PDF

High Precision Measurement for String Resonator used in FBG Strain Sensors (광섬유 브래그 격자 변형률 센서용 현공진기의 고정밀 측정)

  • 이영균;송인천;정성호;이병하;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.135-139
    • /
    • 2001
  • This paper describes a string resonator that is used for the interrogation system of a Fiber Bragg Grating(FBG) strain sensor. The strain on the fiber piece is calculated from the measured frequency based on that the natural frequency of a string is a function of the applied absolute strain. Existing research considered a fiber as a string, but a fiber is not a string in the strict sense due to its bending stiffness, thus the fiber should be modeled as a beam accompanied with an axial force. In the vibration modeling, the relationship between the strain and the natural frequency is derived, and then the resonance condition is described in terms of both the phase and the mode shape for sustaining resonant motion. Several experiments verify the effectiveness of the proposed model of the fiber. The performance of the string resonator is analyzed by measuring the frequency change according to the applied strains in the dynamic range of 1100$\mu\varepsilon$ referred to the displacement from capacitance sensor. From the experimental results, the implemented string resonator provides the accuracy of $\pm$3$\mu\varepsilon$, the quasi-static resolution of ~0.1$\mu\varepsilon$(rms) which amount to be $\pm$0.17$\mu\textrm{m}$ and ~6nm respectively, in case of fiber length of 56mm. For a dynamic strain, it can provide the accuracy of ~3$\mu\varepsilon$ until the frequency comes to 8Hz. As a consequence, the string resonator proposed for FBG sensor provides the high accuracy and the high resolution in strain measurement, and also it is expecting to be used, for the application, to not only strain but also displacement measuring device.

  • PDF

Sensor Applications of Microporous Conjugated Polymers

  • Gwak, Gi-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.125-125
    • /
    • 2014
  • In 1991, Prof. Toshio Masuda of Kyoto University for the first time synthesized a representative of diphenylacetylene polymer derivatives, poly[1-phenyl-2-(p-trimethylsilyl)phenylacetylene] [PTMSDPA]. This polymer is highly soluble nevertheless a ultra-high molecular weight (Mw) of > $1.0{\times}10^6$ which showed excellent chemical, physical, mechanical properties [1]. As one of the most interesting features of PTMSDPA, Prof. Katsumi Yoshino of Osaka Univ. reported that this polymer emits an intense fluorescence (FL) in a visible region because of the effective exciton confinement within the resonant structure between the polyene pi-conjugated chain and side phenyl full-aromatic bulky groups [2]. Very recently, Prof. Ben-Zhong Tang of Hong-Kong Institute of Science and Technology clarified the idea that the FL emission of disubstituted acetylene polymer derivatives originates from intramolecular excimer due to the face-to-face stacking of the side phenyl groups [3]. Thus, to know what influence to intramolecular excimer emission in the film as well as to further understand how the intramolecular excimer forms in the film became more crucial in order to further precisely design the optimized molecular structure for highly emissive, substituted acetylene polymers in the solid state. In recent studies, we have focused our interests on the origin of the FL emission in order to expand our knowledge to developments of novel sensor applications. It was found that the intramolecular phenyl-pheyl stack structure of PTMSDPA in film was variable in response to various external chemical stimuli. Using PTMSDPA and its derivatives, we have developed various potential applications such as latent fingerprint identification, viscosity sensor, chemical-responsive actuator, gum-like soft conjugated polymer, and bioimaging. The details will be presented in the 49th KVS Symposium held in Pyong Chang city.

  • PDF

Setting Characteristic Assessment of Cementitious Materials using Piezoelectric Sensor (압전소자를 이용한 시멘트계 재료의 응결 특성 평가)

  • Lee, Chang Joon;Lee, Jun Cheol;Shin, Sung Woo;Kim, Wha Jung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.5
    • /
    • pp.389-395
    • /
    • 2016
  • The evolution of electro-mechanical impedance (EMI) of the piezoelectricity (PZT) sensor was investigated to determine the setting times of cementitious materials in this study. The PZT sensor coated with non-conductive acrylic resin was embedded in cement paste before casting and the EMI signatures were continuously measured. Vicat needle test and semi-adiabatic calorimetry test were also conducted to justify the validity of EMI senssing technique in setting monitoring of cementitious materials. The results show that significant changes in EMI resonant peak magnitude and frequency during setting process were observed, and that the setting times determined by EMI sensing technique were relevant to the setting times measured by Vicat needle test and semi-adiabatic calorimetry test.

Design of Bent-Slotted High-Sensitivity Microstrip Patch Permittivity Sensor Antenna (구부러진 슬롯이 추가된 고감도 마이크로스트립 패치 유전율 센서 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.5
    • /
    • pp.415-423
    • /
    • 2019
  • In this paper, a design method for a high-sensitivity microstrip patch sensor antenna (MPSA) loaded with a bent-slot was studied for the permittivity measurement. The bent-slot similar to a single-ring complementary split ring resonator was added along a radiating edge of the patch in order to enhance the sensitivity to the permittivity. The sensitivity of the proposed MPSA was compared with that of a conventional rectangular MPSA and a thin rectangular-slotted MPSA. Three MPSAs were designed and fabricated on a 0.76-mm-thick RF-35 substrate so that the input reflection coefficient would resonate at 2.5 GHz in the absence of the superstrate under test. When five different Taconic substrates with a relative permittivity ranging from 2.17 to 10.2 were used as the superstrate under test, experiment results show that the sensitivity of the proposed MPSA, which is measured by the shift in the resonant frequency of the input reflection coefficient, is 4.1 to 6.1 times higher than that of the conventional MPSA.