• Title/Summary/Keyword: resonance excitation

Search Result 333, Processing Time 0.028 seconds

FE Analysis for Fundamental Air-Cavity Resonant Frequency of Tire (타이어의 첫 번째 공기공동 공명에 관한 유한요소해석)

  • Kim, Yong-Woo;Bang, Sung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.551-556
    • /
    • 2009
  • Vehicle interior noise is the results of numerous sources of excitation. One source involving tire pavement interaction is the tire cavity resonance and the forcing it provides to the vehicle spindle. Using a simplified model for the tire acoustic cavity system only, we formulated finite element equation to predict the fundamental acoustic cavity resonant characteristics inside tire-wheel assembly of undeformed and deformed tire. Combining the finite element analysis with experimental verification, we explained the acoustic characteristics theoretically. Especially, we have shown that the difference between the first two resonant frequencies increases as the deformation of tire due to vertical load increases.

  • PDF

Determination of Design Parameters of Stockbridge Damper (스톡브리지 댐퍼 설계 파라미터 선정)

  • Kim, Chan-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.814-819
    • /
    • 2016
  • The Stockbridge damper is used to control the aeolian vibration of a overhead transmission line due to the natural wind under a low velocity, between 1 m/s to 7 m/s. The damper model can be simply derived with several design parameters and the location of eigenvalues of design parameters are important to determine the efficiency of energy dissipation by excitation itself with two counterweights. First, the importance of resonance frequencies of Stockbridge damper was reviewed through the analysis of frequency response function of damper system. Then, the best selection of design parameters was investigated with the introduction of objected function that minimize the distance between the calculated eigenvalues and target frequency points. The best choice of design parameters was reviewed using the simulated results from the objective function and the effectiveness of selected design case was discussed at the point view of practical implementation.

Steady-state Vibration Responses of a Beam with a Nonlinear Boundary Condition (비선형 경계조건을 가진 보의 정상상태 진동응답)

  • Lee, Won-Kyoung;Yeo, Myeong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.337-345
    • /
    • 1997
  • An analysis is presented for the response of a beam constrained by a nonlinear spring to a harmonic excitation. The system is governed by a linear partial differential equation with a nonlinear boundary condition. The method of multiple scales is used to reduce the nonlinear boundary value problem to a system of autonomous ordinary differential equations of the amplitudes and phases. The case of the third-order subharmonic resonance is considered in this study. The autonomous system is used to determine the steady-state responses and their stability.

Evaluation of Blade Resonance of 5MW Power Generation Gas Turbine (발전용 소형가스터빈 블레이드 공진 안정성 평가)

  • Ahn, Sung-Jong;Park, Lu-Ke;Yun, Tae-Jun;Suk, Jin-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.433-438
    • /
    • 2011
  • Doosan has been developing a 5MW class gas turbine engine, DGT-5. Campbell diagram has been used for prediction of possible occurrence of resonances of rotating machinery. The Campbell diagram consists of blade natural frequency and excitation frequency. In this paper, modal characteristics of compressor and turbine blades are investigated and Campbell diagram is obtained. We calculated compressor and turbine blade's natural frequency using ANSYS tool. The result has been verified through test.

  • PDF

Dynamic Behaviors of the Impact Damper and the Accelerated Mass Loading (충격 댐퍼의 동특성과 가속 질량추가 현상에 대한 연구)

  • Wang, Se-Myung;Park, Jong-Chan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.396-401
    • /
    • 2006
  • Dynamic behaviors of the impact damper are studied experimentally and numerically. In order to investigate wide range of excitation frequencies and amplitudes, a simple but high amplifying and bias-free experimental setup is designed. Experiments focused on the harsh operation condition demonstrate Accelerated mass loading which not only deteriorates the performance of the impact damper but also involves the structural resonance which should be avoided for the stability of the system. In the previous studies, instability or deterioration of the performance was reported for the off resonance frequency region. But this paper shows that the performance deterioration and structural resonances can be predicted. Using finite element modeling and analysis, accurate system parameters were derived and used for the numerical modeling employing the conservation of the momentum. Numerical study of the transient responses using 4th-order Runge-Kutta method demonstrates general performance of the system, and shows that accelerated mass loading phenomenon is deeply related with the vibration amplitudes and the mass of the auxiliary system.

  • PDF

A Study on the Longitudinal Vibration of Elevator (승강기의 종진동에 관한 연구)

  • Song, Dal-Ho;Lee, Yu-Jin;Choe, Yeong-Hyu
    • 한국기계연구소 소보
    • /
    • s.19
    • /
    • pp.5-14
    • /
    • 1989
  • Analytical and experimental studies are performed to identify the longitudinal vibration characteristics of elevator system such as the natural frequencies, and the magnification factor at resonance. In the analytical study, a computer program is developed to analyze the vibration characteristics of elevator with varing rope length of elevtor, stiffenss of thimble rod spring, and excitation frequency. The shorter rope length and the stiffer thimble rod spring make the natural frequencies of elevator higer. The resonance at the first natural frequency spreads over the entire travelling range, whereas, that at the second one ranges relatively short, region. The first natural frequencies of the Gald-Star Twin Building and the Korea Trading Center Building obtained by the experiment are overall in good agreement with the analysis result..

  • PDF

Simultaneous Observation of Fe-F and F-Fe-F Stretching Vibrations of Fluoride Anion Ligated Tetraphenylporphyrin Iron(Ⅲ) by Resonance Raman Spectroscopy

  • 이인숙;신지영;남학현;김도균;팽기정
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.7
    • /
    • pp.730-733
    • /
    • 1997
  • Monofluoroiron(Ⅲ) tetraphenylporphyrin, Fe(TPP)F, and difluoroiron(Ⅲ) tetraphenylporphyrin, [Fe(TPP)F2]- were generated in a various non-aqueous solvents by the reaction between Fe(TPP)Cl and tetrabutylammonium fluoride TBAF 3H2O. Formation of the these complexes was detected by the appearance of the ν(F-Fe) (ν, stretching vibration) at 506 cm-1 for Fe(TPP)F and the ν(F-Fe-F) at 448 cm-1 for [Fe(TPP)F2]-, simultaneously, with 441.6 nm excitation by Resonance Raman (RR) spectroscopy. These assignments were confirmed by observed frequency shifts due to 56Fe/54Fe and TPP/TPP-d8/TPP-N15 isotopic substitutions. Difluoroiron complex is an iron(Ⅲ) high-spin complex with the oxidation sensitive band at 1347 cm-1 for ν4 and core size/spin state sensitive band at 1541 cm-1 for ν2.

Superharmonic and subharmonic vibration resonances of rotating stiffened FGM truncated conical shells

  • Hamid Aris;Habib Ahmadi
    • Structural Engineering and Mechanics
    • /
    • v.85 no.4
    • /
    • pp.545-562
    • /
    • 2023
  • In this work, superharmonic and subharmonic resonance of rotating stiffened FGM truncated conical shells exposed to harmonic excitation in a thermal environment is investigated. Utilizing classical shell theory considering Coriolis acceleration and the centrifugal force, the governing equations are extracted. Non-linear model is formulated employing the von Kármán non-linear relations. In this study, to model the stiffener effects the smeared stiffened technique is utilized. The non-linear partial differential equations are discretized into non-linear ordinary differential equations by applying Galerkin's method. The method of multiple scales is utilized to examine the non-linear superharmonic and subharmonic resonances behavior of the conical shells. In this regard, the effects of the rotating speed of the shell on the frequency response plot are investigated. Also, the effects of different semi-vertex angles, force amplitude, volume-fraction index, and temperature variations on the frequency-response graph are examined for different rotating speeds of the stiffened FGM truncated conical shells.

Nonlinear forced vibration of axially moving functionally graded cylindrical shells under hygro-thermal loads

  • Jin-Peng Song;Gui-Lin She;Yu-Jie He
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.99-109
    • /
    • 2024
  • Studying the dynamic behavior of axially moving cylindrical shells in hygro-thermal environments has important theoretical and engineering value for aircraft design. Therefore, in this paper, considering hygro-thermal effect, the nonlinear forced vibration of an axially moving cylindrical shell made of functionally graded materials (FGM) is studied. It is assumed that the material properties vary continuously along the thickness and contain pores. The Donnell thin shell theory is used to derive the motion equations of FGM cylindrical shells with hygro-thermal loads. Under the four sides clamped (CCCC) boundary conditions, the Gallekin method and multi-scale method are used for nonlinear analysis. The effects of power law index, porosity coefficient, temperature rise, moisture concentration, axial velocity, prestress, damping and external excitation amplitude on nonlinear forced vibration are explored through parametric research. It can be found that, the changes in temperature and humidity have a significant effect. Increasing in temperature and humidity will cause the resonance position to shift to the left and increase the resonance amplitude.

Discrete-time Sliding Mode Control with Input Shaping for flexible systems

  • Woo, Lim-Hyun;Choo, Chung-Chung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.130.5-130
    • /
    • 2001
  • This paper presents a discrete-time sliding mode control method for linear time-invariant systems with matched uncertainties. In this paper, we suggest a method of adding a command generator using input shaping filter to a discrete-time sliding mode controller. We design the number of steps required to reach the sliding layer and the magnitude of a control input, respectively using the shaping filter. Therefore we can minimize the excitation of the resonance mode and increase the tracking performance of a system. Simulation results are included to show its effectiveness.

  • PDF