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Dynamic Behaviors of the Impact Damper and the Accelerated Mass Loading
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ABSTRACT

Dynamic behaviors of the impact damper are studied experimentally and numerically. In order to investigate
wide range of excitation frequencies and amplitudes, a simple but high amplifying and bias-free experimental
setup is designed. Experiments focused on the harsh operation condition demonstrate Accelerated mass loading
which not only deteriorates the performance of the impact damper but also involves the structural resonance which
should be avoided for the stability of the system. In the previous studies, instability or deterioration of the
performance was reported for the off resonance frequency region. But this paper shows that the performance
deterioration and structural resonances can be predicted. Using finite element modeling and analysis, accurate
system parameters were derived and used for the numerical modeling employing the conservation of the
momentum. Numerical study of the transient responses using 4th-order Runge-Kutta method demonstrates general
performance of the system, and shows that accelerated mass loading phenomenon is deeply related with the

vibration amplitudes and the mass of the auxiliary system.

1. Introduction

An impact damping which makes use of the
momentum transfers between the primary system
and auxiliary mass during the collision to reduce
severe vibrations of the primary system is one
method of passive vibration control. A single unit
impact damper or just impact damper uses an
auxiliary mass enclosed within a container or a
cavity inside the primary system. Dynamic analysis
and performance of the impact damper [1] have
long been studied. Most of the previous
investigators focused on the parameter study of the
optimum performance at the original resonant
frequency. Only some investigators studied how
impact dampers perform over a wide range of
excitation frequencies and amplitudes. Popplewell
et al. [2] reported in their forced vibration
experiments that excitation frequencies at lower
than the natural frequency produce negative
damping, which case the structure vibrates more
than without the impact damper. Along with the
optimum performance, avoiding resonance is an
important issue for a practical point of view. But,
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there has been little research about the resonance of
the impact damper. Thus, the main emphasis of this
paper is cast on resonant characteristics of the
impact damper. Experimentally and numerically,
this paper will show that resonances of an impact
damper have non-linear characteristics with respect
to the phase of the impact.

2. Physical model and experimental set-up

The system of the impact damper consists of a
cart fixed at the middle of a fixed-fixed circular
beam and a freely moving mass located between
two columns of the cart. The cart motion is
confined to move in x direction only on x-y plane
by a low-friction linear guider. The difference of the
given experimental set-up to the previous studies
[3-6] is the enforced motion excitation not a force
excitation and its measurement through acceleration
signals. Rigid clamping of the beam to the shaker
makes it possible to impart a motion not a force.
Transmissibility, the ratio of the cart displacement
to that of the input is used to estimates the degree of
damping throughout the paper. For the given
system, force excitation with a soft spring was
inadequate to impart a wide range of excitation
amplitude to the cart, which has been used
conventionally for the impartation of the excitation
force. Another feature of the designed experimental
set-up is bias-free motion of the primary mass.
Biased motion is avoided by employing a fixed-
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fixed beam because the direction of the cart motion
is perpendicular to the beam axis and symmetric to
the x-z plane regardless of its magnitude comparing
to the end effect of cantilevered beam.

3. Numerical modeling of the impact
system

For the numerical analysis, the impact damper is
modeled with 2-d.o.f system with an equivalent
linear stiffness k, effective mass of primary mass my,
auxiliary mass m, and viscous damping c as shown
in figure 1.
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Figure 1- Two degree of freedom system model for
a numerical analysis.

The equations of motion can be expressed as
follows,

m X +cX,+kX, =F,sin(of) (1)
mX =0 )

where over-dots refer to the differentiation with
respect to time and subscripts “a” and “p” represent
physical values of primary and auxiliary masses,
respectively.

Finite element analysis is utilized to calculate
the equivalent linear stiffness of the beam.
Calculated generalized mass of the primary mass is
lkg and generalized stiffness is 22848.94 N/m.
4.2% of modal damping from the experiment is
used. And, 40% of the beam mass is added to the
primary mass. 4"-order Runge-Kutta method is
used for the numerical computation. Fast-Fourier
transformed value of displacement of input and
primary mass are used to represent the magnitude
of vibration. For the correlation between the
experimental results with an enforced motion and
numerical simulation of the force input, the
following relation between force and base motion
(input displacement) is utilized.

F, =X~k -co’ 3)

where X, is magnitude of the input displacement,
w is driving frequency in radian and Fj is the
magnitude of driving force.

Impacts between the primary mass and auxiliary
mass are implemented by wupdating the state
variables with calculated values after the impact.
On the basis of the conservation of linear
momentum and using the coefficient of restitution e,
eg. (6), updated state variables can be calculated,
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where # is mass ratio, m,/m; and the superscripts
“+” and “-” represent the states just before and after
the impact, respectively.

The most frequently used scheme of identifying
the time of impact[1,3, 7-9] is checking the
condition weather the relative displacement is less
than a given criteria values or not, given as eq. (7).

)-d/2<R ™
)-d/2<0 @)
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R(IXP (t,.+|) - Xa (trH-l)

where R refers to the relative location of the
masses, d is clearance, R, is a criterion value and
sub-script in ¢ refers to the number of analysis step.

The criterion of the previous research has been
used on the condition that sufficiently small
sampling time could reduce the error. However,
when the relative position R(z,) at time step ¢, is
bigger than criterion, R,, impact occurs at time step
t,+; as shown in figure 2 (a), which is negative
collision.

Quantitatively, the error of the negative collision
is negligibly small when the sampling time is
sufficiently small. But, it can cause serious problem
if it occurs when the velocity difference of the
primary mass and auxiliary mass is small and mass
ratio is considerably large. When the impact with
small velocity difference occurs, the relative
position after impact will remain within the
criterion, R, in the following step. This could
provoke a continuous negative collision which
means unreasonable additional energy loss. In order
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to overcome those errors in the numerical analysis,
improved scheme of identifying contact 1is
developed. In this method, impact condition is
checked whenever the relative position is less than
half of the clearance given as eq. (8). With this
condition, collision always occurs right after two
masses pass behind each other. But, as shown in
figure 2(b), state variables after impact are
calculated with the state variables at time step ¢, not
at time step f#,-;. The consequence of the new
criterion is the sustained motion of the auxiliary
mass to avoid self-inducing repeated collision; any
consecutively identified collision will trigger the
sustained motion of the auxiliary mass by the
primary mass. Sustained motion is more reasonable
than self-inducing repeated collisions or negative
collisions.
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Figure 2- Numerical simulation trajectory of
primary mass and auxiliary mass.

4. Dynamic behaviors of the impact
damper

Figure 3 represents transmissibility diagrams of
experiments and numerical simulation according to

two test conditions listed in table 1 and the figure
caption.

Table 1. Conditions for the experiments and
numerical simulations represented in the figure 3
(d=2.6mm, n=0.57).

Xoavg(average value of

Name F
0 the frequency sweep)

Exp, 0.52 mm

Expy 0.97 mm

Numr, 22N

Numrb 12N

14
12
10

28
=

16 18 20 22 24 26 28
Frequency (Hz)

(a) Frequency response functions;A-experiments
without auxiliary mass with Xgag = 0.52mm; other
conditions listed in Table 1, A-Exp,; a-Exp,; H-
Numr,; O-Numr,, ®-F;=18 N.

5.2E-04 5.8E-04 6.5E-04 6.9E-04 7.3E-04
Xo
(b) Transmissibility with respect to the input
displacement at 19Hz, A -experiments, [] -
numerical simulation.
Figure 3- Numerical simulation and experiment
of the impact damper

Figure 3 shows interesting features that impact
damper decreases the displacement of the primary
mass drastically at the original resonance frequency,
24Hz and there is little negative effect for lower
level input cases of Exp, and Numr,. However, for
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higher input cases of Exp, and Numr,, there are
conspicuous resonant peaks at shifted frequency of
19 Hz. Figure 3 (a) shows strong non-linearity of
the transmissibility or damping capability of the
impact damper according to the input amplitude.
Transmissibility curves in figure 3(b) are measured

and analyzed at 19Hz experimentally and
numerically,. In figure 3(b), two clearly
distinguished slopes of the transmissibility

according to the input amplitude are observed. In
order to study those nonlinear characteristics
according to the input amplitudes, time trajectories
of the experiments and numerical simulations are
studied as shown in figure 4 and figure 5.
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(a) Displacement trajectories: dashed line-
auxiliary mass, solid line-primary mass.
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(b) Velocity trajectories of the primary mass.
Figure 4- Time trajectories of numericai
simulation at 19Hz with 13 N input force (d= 2.6
mm, n=0.57):

x /dt

d

In figure 4 (a), it is observed that dominant
collisions take place evenly when the primary mass
passes the equilibrium position which corresponds
to the largest velocity of the primary mass as shown
in figure 4 (b). And, velocities of the masses are
out-of-phase each other. This configuration of
impact affects the primary mass to transfer its
momentum to the auxiliary mass with maximum

loss. Figure 4 (b) shows abrupt reduction of the
absolute value of the velocity after every impact,
implying the loss of kinetic energy. This mechanism
contributes to the low transmissibility or high
damping in the first half of the input amplitude
range in figure 3(b). Different kinds of collisions
are illustrated in figure 5 according to the
increasing displacement input.

>
><-°'

-2F

-4

B

462 464 465 458 472 474 476
time (

(a) Dlsplacement (Fo= 18N)

os| o N ' N
0.4

D2} ]
e Ob—p - , ‘

dx /dt

02
0.4
0.6
454 4,.56 4‘;jetim84('ssec) 462 44‘54 fBE
(b) Velocity (Fo=18N)
10 x 10 .
8
Bf
4
xn 2 I
~ ol
at
AF
B}
8t

402 403 404 4.05 408 407
time (sec)

(c) Displacement (Fy=22 N)



e

4553 2006 2AGENEH =R

0st
os 1
04
02t ]
a OF
D2+
04}
06}
08}

dx _Jdt

402 404 406 408 41 412 414 416
time {sec)

(d) Velocity (Fo= 22 N)
Figure 5- Time trajectories of numerical
simulations, dashed line-auxiliary mass; solid line-
primary mass.

In figure 5 (a) and (b), it is observed that
dominant collisions take place regularly around the
maximum strokes of the displacement and zero
velocity of the primary mass resulting in less
efficient momentum transfer to the contrary of the
high damping in figure 3(b). Figure 5 (c)
demonstrates that the collisions take place with the
same direction of both masses. This kind of
momentum transfer not only magnifies the
amplitude of the primary mass but also adds kinetic
energy of the auxiliary mass to the primary mass
without modifying the original system resulting in
the change of resonant frequency of the system.
Numerical simulations of figure 4 and 5 are
corroborated with experimental data. Figure 6
illustrates measured acceleration signals and
magnitude scaled velocity of the primary mass.
Velocity histories are achieved by integrating the
acceleration signals. Then, the magnitudes are
scaled to shows the time of impact because the
measured acceleration signals are severely complex
due to the high frequency structural vibrations
caused by impact.
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(a) 0.53mm input (Fy=13 N)
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Figure 6- Experimental acceleration and scaled
velocity at 19Hz, arrows indicate the time of impact
in (a), dashed circles enclose the time of impact in

(b) and (¢) : —

acceleration.

magnitude scaled velocity, —

In figure 6, abrupt acceleration peaks imply the
time of impact which shows good agreement with
numerical simulations shown in figure 4 and 5.

It can be concluded that out-of-phase impact
reduces the displacement of the primary mass with
efficient momentum transfer. With increasing the
input amplitude, the degree of damping changes
following the configuration of the impact. In the
limiting case, in-phase impact occurs resulting in
mass loading effect through the kinetic energy
influx into the primary mass, called as accelerated
mass loading by the authors. In order to predict
resonant shift quantitatively, Rayleigh’s energy
method of the system under harmonic motion is
reflected. Numerical simulation of impact damper
showed that the velocity of the primary mass and
auxiliary mass can be regarded as the same when
two masses collide with each other with the same
direction, in-phase impact. Consequently, maximum
displacement of the system is effected by the kinetic
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energy influx through the impact.

For the system under consideration, Rayleigh’s
energy equation can be modified as eq. (9) on the
condition that in-phase impact dominates the
dynamics of the system, and the resulting resonant
frequency, eq.(10), of the system under the kinetic
energy influx by impacts is given,

=3 O, 4 M) =K =V O

max max 2 max

o, = /_lf_ (10)
m,+m,

where y is the displacement of the primary mass
resulting from the kinetic energy influx, and @, is

resonant frequency of the impact induced mass
loaded system. Numerical simulation and
experiment of the impact damper with various mass
ratios verify the validity of the eq. (9) and (10) on
the condition of in-phase impact.

The implication of the experiments and
numerical simulation is that freely moving mass
undergoing periodic impacts can have mass effects
into the system which causes resonance shift
according to the phase of the impact, which is
called accelerated mass loading by authors. For all
the rigorous, the predicted resonant frequency of
impact damper is corroborated with experiments
and numerical simulations.

5. Conclusions

Dynamic responses of the impact damper have
been investigated numerically and experimentally
focused on the resonant vibration of it. Experiments
of the horizontal impact damper showed the general
performance and a shifted resonance of the
integrated system. Time trajectories of the masses
demonstrated that how the relative motion of the
masse is related with the degree of damping. For a
specific case, out-of-phase impact produces the
most effective damping and the efficiency of the
momentum transfer deteriorated with increasing
input amplitudes which agrees with general theory.
It is observed from the experiments and numerical
simulation that the in-phase impact between masses
induces kinetic energy influx into the primary mass
with effective mass of the auxiliary mass resulting
in mass loading effect even though the mass is
freely moving under impacts. A simple prediction
model for the accelerated mass loading effect is

formulated on the basis of the observed condition.
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