• Title/Summary/Keyword: resistor string

Search Result 12, Processing Time 0.031 seconds

10-bit Source Driver with Resistor-Resistor-String Digital to Analog Converter Using Low Temperature Poly-Si TFTs

  • Kang, Jin-Seong;Kim, Hyun-Wook;Sung, Yoo-Chang;Kwon, Oh-Kyong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.696-699
    • /
    • 2008
  • A 10-bit source driver using low temperature poly-silicon(LTPS) TFTs is developed. To reduce the DAC area, the DAC structure including two 5-bit resistor-string DACs and analog buffer, which has analog adder is proposed. The source driver is fabricated using LTPS process and its one channel area is $3,200{\mu}m\;{\times}\;260{\mu}m$. The simulated INL and DNL of output voltages are less than 3 LSB and 1 LSB, respectively.

  • PDF

A Low-Power 1 Ms/s 12-bit Two Step Resistor String Type DAC in 0.18 ㎛ CMOS Process (0.18 ㎛ CMOS 공정을 이용한 저 전력 1 Ms/s 12-bit 2 단계 저항 열 방식 DAC)

  • Yoo, MyungSeob;Park, HyungGu;Kim, HongJim;Lee, DongSoo;Lee, SungHo;Lee, KangYoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.67-74
    • /
    • 2013
  • A low-power 12-bit resistor string DAC for wireless sensor applications is presented. Two-step approach reduces complexity, minimizes power consumption and area, and increases speed. This chip is fabricated in 0.18-${\mu}m$ CMOS and the die area is $0.76mm{\times}0.56mm$. The measured power consumption is 1.8mW from the supply voltage of 1.8V. Measured SFDR(Spurious-Free Dynamic Range) is 70dB when the sampling frequency is less than 1 MHz.

A Study on the Development of Semi-automated Analog Cell Compiler for MML Library (MML(merged memory logic) 라이브러리 구축을 위한 반자동 아날로그 컴파일러 개발에 관한 연구)

  • 최문석;송병근곽계달
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.695-698
    • /
    • 1998
  • Today SOC(system on a chip) is a trend in VLSI design society. Especially MML(merged memory Logic) process provides designers with good chances to implement SOC which is consists of DRAM, SRAM, Logic and A/D mixed mode ciruit blocks. Designers need good circuit library which is reliable and easy to tune for specific design. For this need we present semi-automated analog compiler methodology. And we aplied this design methodology to resistor-string DAC design.

  • PDF

A New Variable Degeneration Resistor for Digitally Programmable CMOS VGA (디지털 방식의 이득조절 기능을 갖는 CMOS VGA를 위한 새로운 가변 축퇴 저항)

  • Kwon, Duck-Ki;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.7 no.1 s.12
    • /
    • pp.43-55
    • /
    • 2003
  • A degenerated differential pair has been widely used as a standard topology for digitally programmable CMOS VGAs. A variable degeneration resistor has been implemented using a resistor string or R-2R ladder with MOSFET switches. However, in the VGAs using these conventional methods, low-voltage and high-speed operation is very hard to achieve due to the dc voltage drop over the degeneration resistor. To overcome the problem a new variable degeneration resistor is proposed where the dc voltage drop is almost removed. The proposed gain control scheme makes it easy to implement a low-voltage and high-speed VGA. This paper describes the problems existed in conventional methods, the principle and advantages of the proposed scheme, and their performance comparison in detail. A CMOS VGA cell is designed using the proposed degeneration resistor. The 3dB bandwidths are greater than 650㎒ and the gain errors are less than 0.3dB in a gain control range from -12dB to +12dB in 6dB steps. It consumes 3.1㎃ from a 2.5V supply voltage.

  • PDF

Design of a 2.5V 300MHz 80dB CMOS VGA Using a New Variable Degeneration Resistor (새로운 가변 Degeneration 저항을 사용한 2.5V 300MHz 80dB CMOS VGA 설계)

  • 권덕기;문요섭;김거성;박종태;유종근
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.9
    • /
    • pp.673-684
    • /
    • 2003
  • A degenerated differential pair has been widely used as a standard topology for digitally programmable CMOS VGAs. A variable degeneration resistor has been implemented using a resistor string or R-2R ladder with MOSFET switches. However, in the VGAs using these conventional methods, low-voltage and high-speed operation is very hard to achieve due to the dc voltage drop over the degeneration resistor. To overcome this problem a new variable degeneration resistor is proposed where the dc voltage drop is almost removed. Using the proposed gain control scheme, a low-voltage and high-speed CMOS VGA is designed. HSPICE simulation results using a 0.25${\mu}{\textrm}{m}$ CMOS process parameters show that the designed VGA provides a 3dB bandwidth of 360MHz and a 80dB gain control range in 2dB step. Gain errors are less than 0.4dB at 200MHz and less than l.4dB at 300MHz. The designed circuit consumes 10.8mA from a 2.5V supply and its die area is 1190${\mu}{\textrm}{m}$${\times}$360${\mu}{\textrm}{m}$.

Gain Controllable ABC using Two-Stage Resistor String for CMOS Image Sensor

  • No, Ju-Young;Yoon, Jin-Han;Park, Soo-Yang;Park, Yong;Son, Sang-Hee
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.341-344
    • /
    • 2002
  • This paper is proposed a 8-bit analog to digital converter for CMOS image sensor. A analog to digital converter for CMOS image sensor is required function to control gain. Frequency divider is used In control gain in this proposed analog to digital converter. At 3.3 Volt power supply, total static power dissipation is 8㎽ and programmable gain control range is 30㏈. Newly suggested analog to digital converter is designed by 0.35um 2-poly 4-metal CMOS technology.

  • PDF

An Area-Efficient Time-Shared 10b DAC for AMOLED Column Driver IC Applications (AMOLED 컬럼 구동회로 응용을 위한 시분할 기법 기반의 면적 효율적인 10b DAC)

  • Kim, Won-Kang;An, Tai-Ji;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.87-97
    • /
    • 2016
  • This work proposes a time-shared 10b DAC based on a two-step resistor string to minimize the effective area of a DAC channel for driving each AMOLED display column. The proposed DAC shows a lower effective DAC area per unit column driver and a faster conversion speed than the conventional DACs by employing a time-shared DEMUX and a ROM-based two-step decoder of 6b and 4b in the first and second resistor string. In the second-stage 4b floating resistor string, a simple current source rather than a unity-gain buffer decreases the loading effect and chip area of a DAC channel and eliminates offset mismatch between channels caused by buffer amplifiers. The proposed 1-to-24 DEMUX enables a single DAC channel to drive 24 columns sequentially with a single-phase clock and a 5b binary counter. A 0.9pF sampling capacitor and a small-sized source follower in the input stage of each column-driving buffer amplifier decrease the effect due to channel charge injection and improve the output settling accuracy of the buffer amplifier while using the top-plate sampling scheme in the proposed DAC. The proposed DAC in a $0.18{\mu}m$ CMOS shows a signal settling time of 62.5ns during code transitions from '$000_{16}$' to '$3FF_{16}$'. The prototype DAC occupies a unit channel area of $0.058mm^2$ and an effective unit channel area of $0.002mm^2$ while consuming 6.08mW with analog and digital power supplies of 3.3V and 1.8V, respectively.

A 10-bit CMOS Time-Interpolation Digital-to-Analog Converter (10-비트 CMOS 시간-인터폴레이션 디지털-아날로그 변환기)

  • Kim, Myngyu;Jang, Young-Chan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.225-228
    • /
    • 2012
  • In this paper, a 10-bit digital-to-analog converter (DAC) with small area is proposed. The 10-bit DAC consists of a 8-bit decoder, a 2-bit time-interpolator, and a buffer amplifier. The proposed time-interpolation is achieved by controlling the charging time through a low-pass filter composed of a resistor and a capacitor. To implement the accurate time-interpolator, a control pulse generator using a replica circuit is proposed to minimize the effect of the process variation. The proposed 10-bit Time-Interpolation DAC occupies 61 % of the conventional 10-bit resistor-string DAC. The proposed DAC is designed using a $0.35{\mu}m$ CMOS process with a 3.3 V supply. The simulated DNL and INL are +0.15/-0.21 LSB and +0.15/-0.16 LSB, respectively.

  • PDF

Investigation of miximum permitted error limits for second order sigma-delta modulator with 14-bit resolution (14 비트 분해능을 갖는 2차 Sigma-Delta 변조기 설계를 위한 구성요소의 최대에러 허용 범위 조사)

  • Cho, Byung-Woog;Choi, Pyung;Sohn, Byung-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.5
    • /
    • pp.1310-1318
    • /
    • 1998
  • Sigma-delta converter is frequently used for conyerting low-frequency anglog to digital signal. The converter consists of a modulator and a digital filer, but our work is concentrated on the modulator. In this works, to design second-order sigma-dalta modulator with 14bit resolution, we define maximumerror limits of each components (operational smplifier, integrator, internal ADC, and DAC) of modulator. It is first performed modeling of an ideal second-order sigma-delta modulator. This is then modified by adding the non-ideal factors such as limit of op-amp output swing, the finit DC gain of op-amp slew rate, the integrator gian error by the capacitor mismatch, the ADC error by the cmparator offset and the mismatch of resistor string, and the non-linear of DAC. From this modeling, as it is determined the specification of each devices requeired in design and the fabrication error limits, we can see the final performance of modulator.

  • PDF

A Design of CMOS Analog-Digital Converter for High-Speed . Low-power Applications (고속 . 저전력 CMOS 아날로그-디지탈 변환기 설계)

  • Lee, Seong-Dae;Hong, Guk-Tae;Jeong, Gang-Min
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.1
    • /
    • pp.66-74
    • /
    • 1995
  • A 8-bit 15MHz CMOS subranging Analog-to-Digital converter for high-speed, low-power consumption applications is described. Subranging, 2 step flash, A/D converter used a new resistor string and a simple comparator architecture for the low power consumption and small chip area. Comparator exhibites 80dB loop gain, 50MHz conversion speed, 0.5mV offset and maximum error of voltage divider was 1mV. This Analog-to-Digital converter has been designed and fabricated in 1.2 m N-well CMOS technology. It consumed 150mW power at +5/-5V supply and delayed 65ns. The proposed Analog-to-Digital converter seems suitable for high- speed, low-power consumption, small area applications and one-chip mixed Analog- Digital system. Simulations are performed with PSPICE and a fabricated chip is tested.

  • PDF