• Title/Summary/Keyword: resistivity modeling

Search Result 109, Processing Time 0.245 seconds

2D Resistivity Modeling Including Tunnel (터널을 포함한 전기비저항탐사 2차원 모델링)

  • Kyeung, Keu-Ha;Cho, In-Ky;Kim, Ki-Ju;Jung, Jae-Hyeung;Bae, Gyu-Jin;Ahn, Hee-Yoon;Kim, Ki-Seog
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.179-184
    • /
    • 2007
  • The electrical resistivity method has been widely used for the efficient maintenance of tunnel. In this case, the main purpose of the survey is to find out resistivity distribution around the tunnel. However, resistivity data are severely distorted by the tunnel, which make it hard to detect anomalous zones developed around the tunnel. In this study, using the finite element modeling, we analyze resistivity data distorted by the tunnel. Finally, we propose a simple method to correct the tunnel effect.

  • PDF

A Study on Topographic Effects in 2D Resistivity Survey by Numerical and Physical Scale Modeling (수치 및 축소모형실험에 의한 2차원 전기비저항 탐사에서의 지형효과에 관한 연구)

  • Kim Gun-Soo;Cho In-Ky;Kim Ki-Ju
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.4
    • /
    • pp.165-170
    • /
    • 2003
  • Recently, resistivity surveys have been frequently carried out over the irregular terrain such as mountainous area. Such an irregular terrain itself can produce significant anomalies which may lead to misinterpretations. In this study, topographic effects in resistivity survey were studied using the physical scale modeling as well as the numerical one adopting finite element method. The scale modeling was conducted at a pond, so that we could avoid the edge effect, the inherent problem of the scale modeling conducted in a water tank in laboratory. The modeling experiments for two topographic features, a ridge and a valley with various slope angles, confirmed that the results by the two different modeling techniques coincide with each other fairly well for all the terrain models. These experiments adopting dipole-dipole array showed the distinctive terrain effects, such that a ridge produces a high apparent resistivity anomaly at the ridge center flanked by zones of lower apparent resistivity. On the other hand, a valley produces the opposite anomaly pattern, a central low flanked by highs. As the slope of a terrain model becomes steeper, the terrain-induced anomalies become stronger, and moreover, apparent resistivity can become even negative for the model with extremely high slope angle. All the modeling results led us to the conclusion that terrain effects should be included in the numerical modeling and/or the inversion process to interpret data acquired at the rugged terrain area.

The Resistivity Modeling of Ion Implanted Polycrystalline Silicon (이온주입에 의한 다결정 실리콘의 고유저항 모델링)

  • Park, Jong Tae;Lee, Moon Key;Kim, Bong Ryul
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.3
    • /
    • pp.370-375
    • /
    • 1986
  • In this paper, modeling of the conduction mechanism of ion implanted p-type polycrystalline silicon is studied. From this modeling, the resistivity of p-type polycrystalline and its dependence on dopant concentration are calculated. The proposed modeling whose grain size is about 1450 \ulcorneris shwon to agree well with the experimental result.

  • PDF

Numerical Resistivity Modeling Using Alpha Center Theory: A Case History for Field Resistivity Data (Alpha center를 이용한 전기비저항 수치 모델링 : 현장 탐사 자료에 대한 적용 예)

  • 윤왕중
    • Tunnel and Underground Space
    • /
    • v.7 no.4
    • /
    • pp.334-340
    • /
    • 1997
  • Alpha center theory which was first proposed by Stefanescu has been proved to be effective for the detection of the location of the conductive orebody. A numerical forward modeling was conducted to verify the effectiveness of this method. Field works were carried out along the three profiles in two different areas for the purpose of finding fractured zone which might be accompanied with the presence of the groundwater. And the results were modeled by alpha center method, which was later testified by wellproven 2-dimensional finite difference inversion scheme. Field data could be successfully modeled with this alpha center algorithm, especially for the smooth-varying resistivity models. For the abrupt change of the resistivity values, the alpha center coefficients have a tendency to be negative to simulate the steep resistivity gradients. This method is quite simple and easy for the future applications. The numerical calculation can be performed very quickly with the personal computers.

  • PDF

Three dimensional resistivity structure of the Serra da Cangalha crater inferred from magnetotelluric modeling

  • Adepelumi Adekunle Abraham
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.182-188
    • /
    • 2004
  • In view of the circular geometry of the Serra da Cangalha impact crater, we have carried out a 3D forward modeling computation for twenty-five MT data in order to obtain the 3D resistivity forward model for the crater region. The 3D resistivity forward model revealed a five-layer model, showing a significant reduction in the basement resistivity. We suggest that this, perhaps, could be due to the structural disturbances that have been caused by the meteorite impact on the crater about 220 million years ago resulting in brecciation, fracturing, alteration and shocked zone filled with fluids. Also, the sensitivity analysis of the 3D model chosen indicates that 3D models having a crater diameter greater than 151 are inconsistent with our data because the 3D model responses are very sensitive to changes in the diameter beyond 15 km. This analysis also reveals that, the depth limits (for the 3D body) causing the anisotropic effects seen on some of our apparent resistivity curves maximally does not extend beyond 1.2 km depth.

  • PDF

Three-Dimensional Resistivity Modeling by Serendipity Element (Serendipity 요소법에 의한 전기비저항 3차원 모델링)

  • Lee, Keun-Soo;Cho, In-Ky;Kang, Hye-Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.1
    • /
    • pp.33-38
    • /
    • 2012
  • A resistivity method has been applied to wide range of engineering and environmental problems with the help of automatic and precise data acquisition. Thus, more accurate modeling and inversion of time-lapse monitoring data are required since resistivity monitoring has been introduced to quantitatively find out subsurface changes With respect to time. Here, we used the finite element method (FEM) for 3D resistivity modeling since the method is easy to realize complex topography and arbitrary shaped anomalous bodies. In the FEM, the linear elements, also referred to as first order elements, have certain advantages of simple formulation and narrow bandwidth of system equation. However, the linear elements show the poor accuracy and slow convergence of the solution with respect to the number of elements or nodes. To achieve the higher accuracy of finite element solution, high order elements are generally used. In this study, we developed a 3D resistivity modeling program using high order Serendipity elements. Comparing the Serendipity element solutions for a cube model with the linear element solutions, we assured that the Serendipity element solutions are more accurate than the linear element solutions in the 3D resistivity modeling.

A Study on Improved Optimization Method for Modeling High Resistivity SOI RF CMOS Symmetric Inductor (High Resistivity SOI RF CMOS 대칭형 인덕터 모델링을 위한 개선된 Optimization 방법 연구)

  • Ahn, Jahyun;Lee, Seonghearn
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.9
    • /
    • pp.21-27
    • /
    • 2015
  • An improved method based on direct extraction and simultaneous optimization is developed to determine model parameters of symmetric inductors fabricated by the high resistivity(HR) silicon-on-insulator(SOI) RF CMOS process. In order to improve modeling accuracy, several model parameters are directly extracted by Y and Z-parameter equations derived from two equivalent circuits of symmetric inductor and grounded center-tap one, and the number of unknown parameters is reduced using parallel resistance and total inductance equations. In order to improve optimization accuracy, two sets of measured S-parameters are simultaneously optimized while same model parameters in two equivalent circuits are set to common variables.

Safety Analysis of Reservoir Dikes in South Korea through the Interpretation of the Electrical Resistivity Data Considering Three-dimensional Structure (3차원 구조를 고려한 전기비저항 탐사자료 해석을 통한 국내 저수지 제체 안전성 분석)

  • Song, Sung-Ho;Yong, Hwan-Ho;Lee, Gyu-Sang;Cho, In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.3
    • /
    • pp.160-167
    • /
    • 2019
  • Resistivity inversion result may be distorted if the seepage line fluctuation within central core with the change of reservoir water level as well as the conductivity of the reservoir water is not taken into consideration because the reservoir dike is composed of three-dimensional (3D) resistivity structure. Consequently, to accurately analyze the resistivity changes inside the reservoir dike according to the change of reservoir water level, 3D electrical resistivity modeling for the 2D survey line considering topography and physical properties of dam components was carried out. In addition, 2D inversion was performed with the simulated 2D resistivity data for a given 3D model in order to compare it with the inversion result of real field data. For 283 reservoirs in Korea, 2D inversion results for the simulated 2D data and field 2D resistivity data were compared. Finally, the reservoirs with an inversion ratio of 50% or less were selected as reservoirs that require further precise investigation.

IP Modeling and Inversion Using Complex Resistivity (복소 전기비저항을 이용한 IP 탐사 모델링 및 역산)

  • Son, Jeong-Sul;Kim, Junhg-Ho;Yi, Myeong-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.2
    • /
    • pp.138-146
    • /
    • 2007
  • This paper describes 2.5D induced polarization (IP) modeling and inversion algorithms using complex resistivity. The complex resistivity method has merits for acquiring more valuable information about hydraulic parameters and pore fluid than the conventional IP methods. The IP modeling and inversion algorithms are developed by allowing complex arithmetic in existing DC modeling and inversion algorithms. The IP modeling and inversion algorithms use a 2.5D DC finite-element algorithm and a damped least-squares method with smoothness constraints, respectively. The accuracy of the IP modeling algorithm is verified by comparing its responses of two synthetic models with two different approaches: linear filtering for a three-layer model and an integral equation method for a 3D model. Results from these methods are well matched to each other. The inversion algorithm is validated by a synthetic example which has two anomalous bodies, one is more conductive but non-polarizable than the background, and the other is polarizable but has the same resistivity as the background. From the inverted section, we can cleary identify each anomalous body with different locations. Furthermore, in order to verify its efficiency to the real filed example, we apply the inversion algorithm to another three-layer model which includes phase anomaly in the second layer.

Resistivity Survey Using Long Electrodes (긴 전극을 사용하는 전기비저항 탐사)

  • Cho, In-Ky;Lee, Keun-Soo;Kim, Yeon-Jung;Kim, Rae-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.1
    • /
    • pp.45-50
    • /
    • 2016
  • Generally, a point source has been routinely used in the electrical resistivity measurements because of easy installation. If steel-cased wells are used as long electrodes, we can expect the better depth of investigation. However, the resistivity data with long electrodes can not be processed with a conventional inversion algorithm because a long electrode produces the different primary potential distribution compared with the point source. In this study, we proposed a new technique to process the electrical resistivity data with long electrodes by replacing the long electrode with a sequence of point electrodes. Comparing the potentials obtained from the technique with the analytic/numerical solution, we ensure that the proposed technique can be used for the numerical resistivity modeling based on the finite difference or finite element method.