• 제목/요약/키워드: resistivity inversion

Search Result 153, Processing Time 0.028 seconds

Application of Electrical Resistivity Tomography Using Single Well in Seawater Intrusion Areas (해수침투지역에서 단일 시추공을 이용한 전기비저항 토모그래피 탐사의 적용성)

  • Song, Sung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.369-376
    • /
    • 2007
  • Electrical resistivity tomography was carried out at seawater intrusion monitoring wells located at watershed in coastal areas. It is difficult to identify the characteristics of resistivity near monitoring well in case of using high signalto-noise ratio array due to the high conductivity condition in coastal aquifer although electrical resistivity survey is well adopted to delineate hydrogeological characteristics with the distribution of electrical resistivity. To improve the quality of electrical resistivity survey for two sites with seawater intrusion monitoring wells, inversion with the results of holeto-surface electrical resistivity tomography using single well was executed. The results of inversion for aquifer near wells were verified with the results of drilling log with the informations of fracture, electrical conductivity logging and normal resistivity logging. The inversion for aquifer near one of two wells was also performed at low and high tide with the same electrodes, respectively. From the inversion result, it is possible to obtain the resistivity images with high resolution and to identify the characteristics of aquifer related to seawater intrusion with tidal fluctuation. From this study, it was demonstrated that the hole-to-surface electrical resistivity tomography method accompanied with drilling log, electrical conductivity logging and normal resistivity logging would be useful to delineate the hydrogeological structures near monitoring wells in coastal areas.

Three-dimensional Inversion of Resistivity Data (전기비저항 탐사자료의 3차원 역산)

  • Yi Myeong-Jong;Kim Jung-Ho;Cho Seong-Jun;Chung Seung-Hwan;Song Yoonho
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.4
    • /
    • pp.191-201
    • /
    • 1999
  • The interpretation of resistivity data has, so far, mainly been made under the assumption that the earth is of relatively simple structure and then using one or two-dimensional inversion scheme. Since real earth structure and topography are fully three-dimensional and very complicated In nature, however, such assumptions often lead to misinterpretation of the earth structures. In such situations, three-dimensional inversion is probably the only way to get correct image of the earth. In this study, we have developed a three-dimensional inversion code using the finite element solution for the forward problem. The forward modeling algorithm simulates the real field situation with irregular topography. The inverse problem is solved iteratively using the least-squares method with smoothness constraint. Our inversion scheme employs ACB (Active Constraint Balancing) to enhance the resolving power of the inversion. Including Irregular surface topography in the inversion, we can accurately define the earth structures without artifact in the numerical tests. We could get reasonable image of earth structure by Inverting the real field data sets taken over highway bridge construction site.

  • PDF

A Technical Application of Resistivity Tomography in Cut Slope (절개사면에서 전기비저항 토모그래피 적용 기법)

  • Park, Chung-Hwa;Park, Jong-Oh
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.271-277
    • /
    • 2007
  • To find out the anomalous zone in cut slope composed of phyllite and shist, we performed resistivity tomography using a pole-dipole way. The electrical distribution that propagates from a current source in lower part of slope is measured by a potential electrode in upper part of slope. Apparent resistivity data are inverted with an iterative regularized inversion method to reconstruct 3D resistivity image. By comparing with the resistivity images in relation to each section, the images of anomalous zone correspond to their positions represented in cut slope. Therefore, the application of resistivity tomography in cut slope is useful to recognize the extension of anomalous zone.

Analysis of distortion effect of resistivity data due to 3D geometry of fill dam (필댐의 3차원 기하 효과에 따른 전기비저항 왜곡 효과 분석)

  • Oh Seokhoon;Kim Hyoung-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.55-58
    • /
    • 2005
  • Low resistivity zone is observed at the lower part of a CFRD (Concrete Face Rockfill Dam). Generally, CFRD tends not to have any saturated zone within the body, but the result of resistivity survey shows that it is possible for the dam to be saturated under 20m depth with water. The level of reservoir was under 10m from the crest. We suspect that this result may come from the wrong 2D inversion process ignoring the 3D geometry of dams. For the analysis of possibility of distortion by different geometry, we perform the 3D forward modeling for the dam and apply the 2D inversion process. And then we check the point of traditional interpretation of resistivity data. By the analysis, it is found that the result of 2D inversion process of 3D geometry of dams, seems to have deep relation with the reservoir level, and the complex 3D structure hide some internal electrical anomaly of dams from resistivity information.

  • PDF

Analysis of Distortion Effect of Resistivity Data Due to 3D Geometry of Fill Dam (필댐의 3차원 기하 효과에 따른 전기비저항 왜곡 효과 분석)

  • Oh, Seok-Hoon;Kim, Hyoung-Soo
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.4
    • /
    • pp.211-214
    • /
    • 2005
  • Low resistivity zone is observed at the lower part of a CFRD (Concrete Face Rockfill Dam). Generally, CFRD tends not to have any saturated zone within the body, but the result of resistivity survey shows that it is possible for the dam to be saturated under 20m depth with water. The level of reservoir was under 10 m from the crest. We suspect that this result may come from the wrong 2D inversion process ignoring the 3D geometry of dams. For the analysis of possibility of distortion by different geometry, we perform the 3D forward modeling for the dam and apply the 2D inversion process. And then we check the point of traditional interpretation of resistivity data. By the analysis, it is found that the result of 2D inversion process of 3D geometry of dams, seems to have deep relation with the reservoir level, and the complex 3D structure hide some internal electrical anomaly of dams from resistivity information.

  • PDF

Application of Gold Exploration Using Three-dimensional Resistivity Inversion in Sambo mine (3차원 전기비저항 역산 방법을 이용한 삼보 광산에서 금광 탐사)

  • Park Jong-Oh;Kim Hee-Joon;Song Moo-Young;You Young-June
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.19-27
    • /
    • 2005
  • The Sambo mine is located in Hae-je Myeon, Moo-an Gun, Chollanamdo, which consists of host gneiss and rhyolite possessing quartzite veins with other compositions such as gold, silver, and sublimated sulfur. The ore grade estimated from the core was 0.05~10.9g/t or less in gold and 0.05~389g/t or less in silver, indicating a partial mineralization. The purpose of this paper is to understand the subsurface structures and the distribution of mineralized bodies in the Sambo mine using a combined method of Schlumberger, Wenner, and Dipole-di-pole resistivity surveys on the surface and the resistivity tomography survey in boreholes. The result of three-dimensional resistivity inversion showed that the mineralized body is extended to 240m long in the N10°~20°E direction, with 30m wide and 80 m thick from the surface. The low resistivity zones (<1,000ohm-m) determined from the resistivity image were in good agreement with the mineralized bodies and weak zones identified from the logged cores.

3D Resistivity Survey at a Collapsed Tunnel Site (붕락 터널에서의 3차원 전기비저항 탐사)

  • Cho, In-Ky;Kim, Ki-Seog;Lee, Keun-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.1
    • /
    • pp.14-20
    • /
    • 2015
  • Three-dimensional (3D) resistivity method is an effective tool in the engineering site survey because it can provide a 3D resistivity distribution of the site. In this study, we tried to find out faults, fractures and coal seams that can cause the collapse of the tunnel. We carried out 2D resistivity survey along 5 parallel lines and 11 cross lines and merged all the apparent resistivity data for 3D inversion. Finally, from the 3D resistivity image and drilling data we presented the 3D distribution of faults, fractures and coal seams that are considered the main cause of the tunnel collapse.

Joint Inversion of DC Resistivity and Travel Time Tomography Data (전기비저항과 주시 토모그래피 탐사자료의 복합역산)

  • Kim, Jung-Ho;Yi, Myeong-Jong;Park, Kwon-Gyu;Cho, Chang-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.58-63
    • /
    • 2007
  • We developed a new algorithm for jointly inverting dc resistivity and seismic travel time tomography data based on the multiple constraints: (1) structural similarity based on cross-gradient, (2) correlation between two different material properties, and (3) a priori information on the material property distribution. Through the numerical experiments of surface dc resistivity and seismic refraction surveys, the performance of the proposed algorithm was demonstrated and the effects of different regularizations were analyzed.

  • PDF

Electrical Resistivity Methods in Korea (한국의 전기비저항탐사)

  • Kim, Hee-Joon
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.473-483
    • /
    • 2006
  • Although application of electrical methods in Korea began with observation of self potentials before World War II, the methods were developed slowly by the beginning of 1980's when a major burst of development activity took place. DC resistivity methods are applied in Korea more to geotechnical problems rather than to environmental ones unlike other developed countries. As with every other branch of technology, the evolving speed of the silicon chip and of streaming data to hard disk has revolutionized data collection and noise reduction processing. The last two decades saw major advances in data collection, processing, and interpretation of electrical data. Development of smooth-model two-dimensional (2D) resistivity inversion is one of the most visible changes to geophysical interpretation of the last 40 years and is now routinely applied to apparent resistivity data. The ability to represent resistivities in section rather than pseudosection view has revolutionized interpretation. Although calculation of sensitivities for general electromagnetic problems require numerous forward modelings, DC resistivity methods can enjoy computational efficiencies if sources and receivers occupy the same position, and previously intractable 3D inversion is now becoming available.

Three-dimensional resistivity imaging for site investigations in civil engineering (지반조사를 위한 3차원 전기비저항 탐사)

  • Chung Seung-Hwan;Yi Myeong-Jong;Kim Jung-Ho;Cho Seong-Jun;Song Yoonho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.21-36
    • /
    • 1999
  • Recently resistivity survey is widely used for site investigations in the field of civil engineering. Since such application area requires accurate interpretation tools especially in the area of complicated geology and rough terrain topography, we developed a three-dimensional (3-D) resistivity inversion code, which can reconstruct real earth structures. Furthermore, the inversion code gives resolution-enhanced images by applying the ACB(Active Constraint Balancing) method. With the help of this inversion code, 3-D resistivity survey is now used as new techniques for site investigations in civil engineering problem. By imaging the 3-D resistivity distribution, we could get useful informations such as depth distribution of basement rock, distribution of weak zone, fractures and cavities which is crucial to civil engineers.

  • PDF