• Title/Summary/Keyword: resistive humidity sensor

Search Result 17, Processing Time 0.02 seconds

Evaluation of DC Resistive Humidity Sensors Based on Conductive Carbon Ink (전도성 카본 잉크를 이용한 직류 저항형 습도센서 제작 및 평가)

  • An, Taechang
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.397-401
    • /
    • 2017
  • A DC resistance type humidity sensor using conductive carbon ink was fabricated and its performance was evaluated. The humidity sensor was fabricated using a screen printing technique and have a structure that does not require additional metal electrodes to measure resistance change. To evaluate the performance of the humidity sensor, we measured the DC resistance change under various relative humidity levels. The fabricated humidity sensor showed a resistance change of about $2.5{\sim}50k{\Omega}$ in 11 ~ 95% RH environment. It also shows a linear relationship in the relative humidity versus log DC resistance graph. In comparison with commercial humidity sensor under real environment, it can be confirmed that the resistance of the humidity sensor changes to almost the same level as the measured humidity. These results show that the resistance type humidity sensor can be operated stably in actual environment.

A Resistive-Type Humidity Sensor Using PMMA Thin Film (PMMA를 이용한 저항형 습도감지소자)

  • Lee, Sung-Pil;Rim, Jae-Young;Yoon, Yeo-Kyoung
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.125-130
    • /
    • 1992
  • A resistive-type humidity sensors have been fabricated using cross-linked PMMA thin film as sensing material and their humidity characteristics have been investigated. The sensor coated of the cross-linked PMMA with PVA exhibited largely variation of resistance by increase of relative humidity and less than 3% of hysteresis. Furthermore, the fabricated sensor exhibited superior long-term stability. The response time of the PMMA humidity sensor was about 7 min. for adsorption and about 5 min. for desorption respectively.

  • PDF

A Temperature-Compensated Hygrometer Using Resistive Humidity Sensors (전기 저항식 습도 센서를 이용한 온도 보상된 습도계 설계)

  • Chung, Won-Sup
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.6 s.312
    • /
    • pp.27-32
    • /
    • 2006
  • A temperature-compensated hygrometer has been developed using resistive humidity sensors. It consist of a sine wave generator, logarithm converters, rectifiers, and amplifiers. The hygrometer accomplishes the linearization and temperature compensation of sensor characteristics. The theory of operation is presented and experimental results are used to verify theoretical predictions. The experimental results show that the conversion sensitivity of the hygrometer is about 24.8 mV/%RH and the linearity error of the conversion characteristic is less than 17.2 % over a relative humidity range from 30 to 80 %RH. The results also show that the temperature coefficient of the output voltage is less than $10149ppm/^{\circ}C$ over a temperature range from 22 to $40^{\circ}C$.

Resistive Humidity Sensor Using Phosphonium Salt-Containing Polyelectrolytes Based on the Mutually Cross-linkable Copolymers

  • Lee, Chil-Won;Gong, Myoung-Seon
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.322-327
    • /
    • 2003
  • Two kinds of mutually cross-linkable copolymers were prepared to be used as humidity-sensing materials. The humidity-sensitive thin films consist of cross-linked polyelectrolytes of the following component: 4-vinylbenzyl dimethyl 2-(dimethylphosphino)ethyl phosphonium chloride (1)/ bis(2-methoxyethyl)itaconate (2)= 3/l, 2/l, 1/1 and 1/2 and 4-vinylbenzyl chloride (3)/ vinylbenzyl tributyl phosphonium chloride (4)= 3/l, 2/l, 1/1 and 1/2. The humidity sensor prepared from the reaction of 1/2= 2/l with 3/4= 2/l showed an average resistance of 723,36.2 and 2.42 ㏀ at 30, 60 and 90%RH, respectively. Temperature dependence, frequency dependence, and response time were measured and the reliability test such as water durability and long-term stability were also estimated.

Resistive Polymeric Humidity Sensor Fabricated with Ink-Jet Printing Technique (잉크젯 프린팅을 이용한 저항형 고분자 습도센서)

  • 공명선;금내리
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.49-57
    • /
    • 2004
  • The modified polyionene polyelectrolyte inks were newly prepared and applied to the humidity-sensitive membrane of humidity sensor. The films were fabricated on the alumina substrate with comb-type gold electrode using a ink-jet printing technique. The copolymers of methyl methacrylate, acrylic acid, 2-hydroxyethyl methacrylate and [(2-methacryloyloxy)ethyl]trimethylammonium chloride were also prepared for the humidity-sensing material. which was fabricated by dip-coating method. Electrical measurements under various relative humidity were performed. The humidity-sensitive characteristics of sensors obtained by ink-jet printing technique were compared with that of dip-coating method. Humidity sensors showed a decrease in resistance as an increase of relative humidity and their resistance characteristics are in a close agreement each other.

  • PDF

AC Complex Impedance Study on the Resistive Humidity Sensors with Ammonium Salt-Containing Polyelectrolyte using a Different Electrode Pattern

  • Cha, Jae-Ryung;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2781-2786
    • /
    • 2013
  • We examined the effect of electrode fingers and gaps of coplanar interdigitated electrode (IDE) structures to characterize the ammonium salt-containing polyelectrolyte film of resistance-based humidity sensors. IDEs designed for this purpose were flexible gold electrodes deposited on a polyimide substrate using a printing process because the geometry presents a potential for tunable sensitivity over other electrode designs. The basic design of the sensors consisted of IDEs with a different number of electrode fingers such as 3, 4, and 5 and gap sizes of 310, 360, 410, and $460{\mu}m$. Details of the AC complex impedance characteristics such as the Nyquist plot, Bode plot, and activation energy based on electrode construction were investigated.

The Effect of Electrode Pattern on the Humidity-sensing Properties of the Resistive Humidity Sensor Based on All-printing Process (인쇄공정으로 제조된 저항형 습도센서의 감습특성에 대한 전극패턴의 영향 연구)

  • Ahn, Hee-Yong;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.169-176
    • /
    • 2012
  • Based on our experience in developing resistive humidity sensor, interdigital gold electrodes with different fingers and gaps have been fabricated on a glass epoxy (GE) substrate using screen printing techniques. The basic structure of the electrode consisted of a 3-, 4- and 5-fingers with gaps of 310 and 460 ${\mu}m$. Gold electrode/GE was prepared by first printing silver nanopaste, followed by consecutive electroless plating of Cu, Ni and then Au. Copolymer of [2-(methacryloyloxy)ethyl] dimethyl benzyl ammonium chloride (MDBAC) and methyl methacrylate (MMA) was used as a humidity-sensing polyelectrolyte, which was fabricated by a screen printing method on the Au electrode/GE substrate. The flexible humidity sensor showed acceptable linearity between logarithmic impedance and relative humidity in the range of 20-95%RH, low hysteresis of 1.5%RH, good response and recovery time of 75 sec at 1 V, 1 kHz, and $25^{\circ}C$. Electrode construction had a significant influence on the humidity-sensing characteristics of polymeric humidity sensors. The activation energy between electrode and ion conducting polyelectrolyte plays an important role in explaining the differences of humidity sensing characteristics such as temperature dependence, sensitivity, linearity and hysteresis.

Resistive Humidity Sensor from Copolymers Containing Quaternary Ammonium Salt (II): Four Component Copolymers (4차 암모늄염을 포함하는 공중합체를 이용한 저항형 습도센서 (II) : 4원 공중합체)

  • Lee, Dong-Geun;Lim, Tae-Ho;Jeon, Young-Min;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.31 no.4
    • /
    • pp.302-307
    • /
    • 2007
  • The resistive-type humidity sensors were prepared from the copolymers of [2-[(methacryloyloxy)ethyl]dimethyl]propylamonium bromide (MEPAB), [2-[(methacryloyloxy)ethyl]-2-hydroxyethyl]dimethylammonium bromide (MEHDAB), 2- [(methacryloyloxy)ethyl]trimethylammonium chloride (METAC), and n-butyl methylacrylate (MBA). Four component copolymers MEPAB/BMA/MEHDAB/METAC=4/4/1/1, 3/5/1/1, 2/6/1/1, 1/7/1/1 crosslinked with blocked-isocyanate on Ag/Pd electrode/alumina substrate showed a good durability at high humidities. The various electrical properties such as frequency dependency, temperature dependency, hysteresis, response time and water durability were examined. In the case of copolymer composed of MEPAB/BMA/MEHDAB/METAC=2/6/1/1, the resistance varied from $1.4\;M{\Omega}$ to $2.9\;k{\Omega}$ at $25^{\circ}C$ in the range of $30{\sim}90\;%RH$ and this copolymers showed a good linearity and low hysteresis.

Design and Fabrication of CMOS Micro Humidity Sensor System (CMOS 마이크로 습도센서 시스템의 설계 및 제작)

  • Lee, Ji-Gong;Lee, Sang-Hoon;Lee, Sung-Pil
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.2
    • /
    • pp.146-153
    • /
    • 2008
  • Integrated humidity sensor system with two stages operational amplifier has been designed and fabricated by $0.8{\mu}m$ analog mixed CMOS technology. The system (28 pin and $2mm{\times}4mm$) consisted of Wheatstone-bridge type humidity sensor, resistive type humidity sensor, temperature sensors and operational amplifier for signal amplification and process in one chip. The poly-nitride etch stop process has been tried to form the sensing area as well as trench in a standard CMOS process. This modified technique did not affect the CMOS devices in their essential characteristics and gave an allowance to fabricate the system on same chip by standard process. The operational amplifier showed the stable operation so that unity gain bandwidth was more than 5.46 MHz and slew rate was more than 10 V/uS, respectively. The drain current of n-channel humidity sensitive field effect transistor (HUSFET) increased from 0.54 mA to 0.68 mA as the relative humidity increased from 10 to 70 %RH.

  • PDF

Humidity-Sensing Properties of RF Sputtered Vanadium Oxide Thin Films (RF 스퍼터된 바나듐 산화막의 습도 감지 특성)

  • Choi, Bok-Gil;Choi, Chang-Kyu;Kim, Sung-Jin
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.10
    • /
    • pp.475-480
    • /
    • 2006
  • Vanadium oxide thin films (VOx) have been deposited by RF magnetron sputtering from $V_2O_5$ target under different oxygen partial pressure ratios(0%, 10%) and substrate temperatures$(27^{\circ}C,\;400^{\circ}C)$. Crystallographic structure and morphology of the films are studied by XRD and SEM. Humidity-sensing properties of resistive sensors having interdigitated electrode structure are characterized through electrical conduction measurements. The films deposited at room temperature are amorphous whereas the ones deposited above foot are polycrystalline. The sensors show good response to humidity over 20%RH to 80%RH. Vanadium oxide thin films deposited with $0%O_2$ partial pressure at $400^{\circ}C$ exhibit greater sensitivity to humidity change than others.