• Title/Summary/Keyword: resin membrane

Search Result 114, Processing Time 0.028 seconds

Peptide Domain Involved in the Interaction between Membrane Protein and Nucleocapsid Protein of SARS-associated Coronavirus

  • Fang, Xiaonan;Ye, Linbai;Timani, Khalid Amine;Li, Shanshan;Zen, Yingchun;Zhao, Meng;Zheng, Hong;Wu, Zhenghui
    • BMB Reports
    • /
    • v.38 no.4
    • /
    • pp.381-385
    • /
    • 2005
  • Severe acute respiratory syndrome (SARS) is an emerging infectious disease associated with a novel coronavirus (CoV) that was identified and molecularly characterized in 2003. Previous studies on various coronaviruses indicate that protein-protein interactions amongst various coronavirus proteins are critical for viral assembly and morphogenesis. It is necessary to elucidate the molecular mechanism of SARS-CoV replication and rationalize the anti-SARS therapeutic intervention. In this study, we employed an in vitro GST pull-down assay to investigate the interaction between the membrane (M) and the nucleocapsid (N) proteins. Our results show that the interaction between the M and N proteins does take place in vitro. Moreover, we provide an evidence that 12 amino acids domain (194-205) in the M protein is responsible for binding to N protein. Our work will help shed light on the molecular mechanism of the virus assembly and provide valuable information pertaining to rationalization of future anti-viral strategies.

Water Treatment of Low Pressure Steam turbine Generation on Small MSW Incinerationp Plant (중소형폐기물소각설비의 발전용 용수처리에 관한 연구)

  • Jeon, Kuem-Ha;Ha, Choon-Rai;Kim, Nack-Joo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.836-839
    • /
    • 2009
  • 중소형 폐기물소각설비의 저압 저질의 포화증기를 이용한 폐열발전용 용수처리에 관한 연구를 수행 하였다. 기존 소각설비에 적용된 강산성 이온교환수지형 연수기에 역삼투압 멤브레인 처리와 강염기성 이온교환수지형 용수처리를 연결하여 보일러 용수를 처리한 결과, KS B6209의 30 $kg/cm_2$ 증기 압력의 보일러 용수기준에는 적합하였고, 증기의 비체적으로 증기 농도로 환산하면. 역삼투압법처리에 의한 방법보다는 강염기성이온교환수지형 용수처리를 연계 처리한 결과가 중소형폐기물소각설비의 저압증기터빈발전에 보다 적합한 것으로 나타났다.

  • PDF

Conceptual Design of Pretreatment Process for SIES Using Membrane Process (막분리 공정을 이용한 SIES 전처리설비 개념 설계)

  • 이상진;양호연;신상운
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.15-20
    • /
    • 2003
  • During operation process of SIES(Selective ion exchange system) at Kori Unit 2, it was impossible to remove radionuclides such as ion form and Ag-110m, etc., because activated carbon and ion exchange resin of this system are fouled easily by suspended solids and oils in liquid radwaste that was flowed in this system. In this study, an experiment to improve quality of water which was flowed in SIES was performed. and design data of Scale-up pretreatment process were secured. Also, each module design for Microfiltration and Nanofiltration unit of the pretreatment process for SIES was performed.

  • PDF

Bacteria and Fungi as Alternatives for Remediation of Water Resources Polluting Heavy Metals

  • Joo, Jin-Ho;Hussein, Khalid A.;Hassan, Sedky H.A.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.4
    • /
    • pp.600-614
    • /
    • 2011
  • Classical methods which used for removal of heavy metals from contaminated water are adsorption, precipitation, coagulation, ion exchange resin, evaporation, and membrane processes. Microbial biosorption can be used for the removal of contaminated waters with pollutants such as heavy metals and dyes which are not easily biodegradable. Microbial biosorbents are inexpensive, eco friendly and more effective for the removal of toxic metals from aqueous solution. In this review, the bacterial and fungal abilities for heavy metals ions removal are emphasized. Environmental factors which affect biosorption process are also discussed. A detailed description for the most common isotherm and kinetic models are presented. This article reviews the achievements and the current status of bacterial and fungal biosorption technology for heavy metals removal and provides insights for further researches.

Preconcentration and Determination of Trace Cobalt and Nickel by the Adsorption of Metal-PDC Complexes on the Anion-Exchange Resin Suspension (금속-PDC 착물의 음이온교환 수지 상 흡착에 의한 흔적량 코발트와 니켈의 동시 예비농축 및 정량)

  • Han, Chul-Woo;In, Gyo;Choi, Jong-Moon;Kim, Sun Tae;Kim, Young-Sang
    • Analytical Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.608-615
    • /
    • 2000
  • A determination method of trace nickel and cobalt in water samples was studied and developed by adsorbing their complexes on ion exchange resin suspension. The analytical ions were formed as complexes with a ligand of APDC (ammonium pyrrolidinedithiocarbamate) and adsorbed on anion exchange resin of Dowex 2-X8. After the suspension was filtered out with membrane filter, the complexes were dissolved in HCl solution by an ultrasonic vibrator for ET-AAS determination. Several conditions were optimized as followings. pH of sample solution: 5.0, amount of ligand APDC: more than 430 times in mole ratio, the type and concentration of acid: 0.1 M HCl, and vibration time: 7 minutes. The addition of palladium in the HCl solution could improve the reproducibility and sensitivity by a matrix modification in the absorbance measurement. This procedure was applied for the analysis of three kinds of real water samples. The detection limits equivalent to 3 times standard deviation of blank were Co 0.36 ng/mL and Ni 0.27 ng/mL and recoveries in spiked samples were 99-102% for cobalt and 100-105% for nickel.

  • PDF

Applicability Assessment of Epoxy Resin Reinforced Glass Fiber Composites Through Mechanical Properties in Cryogenic Environment for LNG CCS (에폭시 수지가 적용된 유리섬유 복합재료의 극저온 환경 기계적 특성 분석을 통한 LNG CCS 적용성 평가)

  • Yeom, Dong-Ju;Bang, Seoung-Gil;Jeong, Yeon-Jae;Kim, Hee-Tae;Park, Seong-Bo;Kim, Yong-Tai;Oh, Hoon-Gyu;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.4
    • /
    • pp.262-270
    • /
    • 2021
  • Consumption of Liquefied Natural Gas (LNG) has increased due to environmental pollution; therefore, the need for LNG carriers can efficiently transport large quantities of LNG, is increased. In various types of LNG Cargo Containment System (CCS), Membrane-type MARK-III composed of composite materials is generally employed in the construction of an LNG carrier. Among composite materials in a Mark-III system, glass-fiber composites act as a secondary barrier to prevent the inner hull structure from leakage of LNG when the primary barrier is damaged. Nevertheless, several cases of damage to the secondary barriers have been reported and if damage occurs, LNG can flow into the inner hull structure, causing a brittle fracture. To prevent those problems, this study conducted the applicability assessment of composite material manufactured by bonding glass-fiber and aluminum with epoxy resin and increasing layer from three-ply (triplex) to five-ply (pentaplex). Tensile tests were performed in five temperature points (25, -20, -70, -120, and -170℃) considering temperature gradient in CCS. Scanning Electron Microscopy (SEM) and Coefficient of Thermal Expansion (CTE) analyses were carried out to evaluate the microstructure and thermos-mechanical properties of the pentaplex. The results showed epoxy resin and increasing layer number contributed to improving the mechanical properties over the whole temperature range.

Transport Properties of CO2 and CH4 using Poly(ether-block-amide)/GPTMS Hybird Membranes (Poly(ether-block-amide)/GPTMS 하이브리드 분리막을 이용한 이산화탄소와 메탄의 투과특성)

  • Lee, Keun Chul;Kim, Hyunjoon
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.653-658
    • /
    • 2016
  • Poly(ether-block-amide)(PEBAX$_{(R)}$) resin is a thermoplastic elastomer combining linear chains of hard-rigid polyamide block interspaced soft-flexible polyether block. It was believed that the hard polyamide block provides the mechanical strength and permselectivity, whereas gas transport occurs primarily through the soft polyether block. The objective of this work was to investigate the gas permeation properties of carbon dioxide and methane for PEBAX$^{(R)}$-1657 membrane, and compare with those obtained for other grade of pure PEBAX$^{(R)}$, PEBAX$^{(R)}$-2533 and PEBAX$^{(R)}$ based hybrid membranes. The hybrid membranes based PEBAX$^{(R)}$ were obtained by a sol-gel process using GPTMS ((3-glycidoxypropyl) trimethoxysilane) as the only inorganic precursor. Molecular structure and morphology of membrane were analyzed by $^{29}Si$-NMR, DSC and SEM. PEBAX$_{(R)}$-2533 membrane exhibited higher gas permeability coefficients than PEBAX$^{(R)}$-1657 membrane. This was explained by the increase of chain mobility. In contrast, ideal separation factor of $CO_2/CH_4$ for PEBAX$^{(R)}$-1657 membrane was higher than PEBAX$^{(R)}$-2533 membrane. It was explained by the decrease of diffusion selectivity caused by increase of chain mobility. For PEBAX$^{(R)}$/GPTMS hybrid membrane, gas permeability coefficients were decreased with reaction time. Gas permeability coefficient of $CH_4$ was more significantly decreased than $CO_2$. It can be explained by the reduction of chain mobility caused by the sol-gel process, and strong affinity of PEO segment with $CO_2$. Comparing with pure PEBAX$^{(R)}$-1657 membrane, ideal separation factor of $CO_2/CH_4$ for PEBAX$^{(R)}$/GPTMS hybrid membrane has decreased to 4.5%, and gas permeability coefficient of $CO_2$ has increased 3.5 times.

Application of Capacitive Deionization Packed Ion Exchange Resins in Two Flow Channels (두 가지 유로 형태에 따라 이온교환수지를 채운 축전식 탈염기술)

  • Lee, Dong-Ju;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.1
    • /
    • pp.24-30
    • /
    • 2015
  • To desalinate the aqueous solutions with high salt concentration using the capacitive deionization technology, two resin/membrane capacitive deionization(RMCDI) cells were fabricated by filling mixed ion exchange resins in two different flow channels (spacer and spiral type). The salt removal efficiency of the spacer- and spiral-RMCDI was 77.21 and 99.94%, respectively. Many ions were significantly removed in a spiral RMCDI cell because the feed solution could be more evenly contacted with the ion exchange resins filled on the spiral type flow channel. As the result of the changes of pH and accumulative charges, it was observed that Faradaic reaction was diminished for a spiral RMCDI cell filled by the mixture of cation and anion exchange resins. Therefore, the desalination of the aqueous solutions with high salt concentration by the capacitive deionization technology was proven. In addition, further studies on the optimization of the mixing ratio with ion exchange resins and the introduction of the regeneration process generally occurred in the continuous electrodeionization (CEDI) technology are required to improve the RMCDI technology.

Preparation and Electrical Properties of Carbon Paper Using Chopped Carbon Fiber (탄소 단섬유를 이용한 탄소종이 제조 및 전기전도도 특성)

  • Lee, Ji-Han;Yoo, Yoon-Jong;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.121-125
    • /
    • 2013
  • In this work, we prepared the carbon paper from chopped carbon fibers using a gas diffusion matrix in polymer electrolyte membrane fuel cells by wet processing. The process of making carbon paper using wet processing is consisted of the three steps involving the dispersion of chopped carbon fibers, the preparation of the carbon fiber web, the impregnating of phenol resin. This work was focused on finding the optimal surfactant to make the carbon paper with 2D orientation of carbon fibers by investigating the dispersion state of carbon fibers in different dispersion solutions. Furthermore, the effect of phenol resin and carbon black contents on properties of electric conductivity was analyzed. As a result, it is confirmed that the carbon fiber was well dispersed when using sodium dodecyl sulfate as a surfactant, and the carbon paper with 8 wt% of phenol and 5 wt% of carbon black contents showed the most excellent electrical property.

Gas Permeation Properties of Carbon Dioxide and Methane for $PEBAX^{TM}$/TEOS Hybrid Membranes ($PEBAX^{TM}$/TEOS 하이브리드 분리막을 통한 이산화탄소와 메탄의 기체투과특성)

  • Kim, Hyunjoon
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.460-464
    • /
    • 2011
  • Poly(ether-block-amide)(PEBA, $PEBAX^{TM}$) resin is a thermoplastic elastomer combining linear chains of hard-rigid polyamide block interspaced soft-flexible polyether block. It was believed that the hard polyamide block provides the mechanical strength and permeation selectivity, whereas gas transport occurs primarily through the soft polyether block. The objective of this work was to investigate the gas permeation properties of carbon dioxide and methane for $PEBAX^{TM}$-1657 membrane and compare with those obtained for other grade of $PEBAX^{TM}$, $PEBAX^{TM}$-2533. And the organic/inorganic hybrid membranes were prepared using $PEBAX^{TM}$ and TEOS(tetraethoxysilane) by sol-gel process, and gas permeation properties were studied. $PEBAX^{TM}$-2533 membrane exhibited higher gas permeability coefficients than $PEBAX^{TM}$-1657 membrane. This was explained by the increase of chain mobility. The permeability coefficients for $PEBAX^{TM}$/TEOS hybrid membranes were higher than pure $PEBAX^{TM}$ membranes. This results were explained by the reduction of crystallinity of polyamide block by the introduction of TEOS. Ideal separation factor of hybrid membranes does not change much. This might be due to the increase of solubility selectivity.