DOI QR코드

DOI QR Code

Bacteria and Fungi as Alternatives for Remediation of Water Resources Polluting Heavy Metals

  • Joo, Jin-Ho (Department of Biological Environment, Kangwon National University) ;
  • Hussein, Khalid A. (Department of Biological Environment, Kangwon National University) ;
  • Hassan, Sedky H.A. (Department of Biological Environment, Kangwon National University)
  • Received : 2011.07.11
  • Accepted : 2011.08.17
  • Published : 2011.08.31

Abstract

Classical methods which used for removal of heavy metals from contaminated water are adsorption, precipitation, coagulation, ion exchange resin, evaporation, and membrane processes. Microbial biosorption can be used for the removal of contaminated waters with pollutants such as heavy metals and dyes which are not easily biodegradable. Microbial biosorbents are inexpensive, eco friendly and more effective for the removal of toxic metals from aqueous solution. In this review, the bacterial and fungal abilities for heavy metals ions removal are emphasized. Environmental factors which affect biosorption process are also discussed. A detailed description for the most common isotherm and kinetic models are presented. This article reviews the achievements and the current status of bacterial and fungal biosorption technology for heavy metals removal and provides insights for further researches.

Keywords

References

  1. Ahalya, N., T.V. Ramachandra, and R.D. Kanamadi. 2003. Biosorption of heavy metals. Res. J. Chem. Environ. 7:71-78.
  2. Ahuja, P., R. Gupta, and R.K. Saxena. 1999. Sorption and Desorption of Cobalt by Oscillatoria anguistissima. Curr Microbiol. 39:49-52. https://doi.org/10.1007/PL00006826
  3. Akhtar, K., M.W. Akhtar, and A.M. Khalid. 2007. Removal and recovery of uranium from aqueous solutions by Trichoderma harzianum. Wat. Res. 41:1366-1378. https://doi.org/10.1016/j.watres.2006.12.009
  4. Aksu, Z. and G. Donmez 2001. Comparison of copper(II) biosorptive properties of live and treated Candida sp. J. Environ. Sci. Health. 36:367-381. https://doi.org/10.1081/ESE-100102928
  5. Akthar, M.N. and P.M. Mohan. 1995. Bioremediation of toxic metal ions from polluted lake waters and industrial effluents by fungal biosorbent. Curr. Sci. 69:1028-1030.
  6. Arica, M.Y., I. Tuzun, E. Yalcin, O. Ince, and G. Bayramolu. 2005. Utilisation of Native, Heat and Acid-Treated Microalgae Chlamydomonas reinhardtii Preparations for Biosorption of Cr (VI) ions. Process Biochem. 40:2351-2358. https://doi.org/10.1016/j.procbio.2004.09.008
  7. Bai, R.S. and T.E. Abraham 2002. Studies on enhancement of Cr(VI) biosorption by chemically modified biomass of Rhizopus nigricans. Water Res. 36:1224-1236. https://doi.org/10.1016/S0043-1354(01)00330-X
  8. Baldrian, P. 2003. Interactions of heavy metals with white-rot fungi. Enz. Microb. Techol. 32:78-91. https://doi.org/10.1016/S0141-0229(02)00245-4
  9. Bayramoglu, G., G. Celik, E. Yalcin, M. Yilmaz, and Arica. M.Y. 2007. Modification of surface properties of Lentinus sajor-caju mycelia by physical and chemical methods: evaluation of their $Cr^{6+}$ removal efficiencies from aqueous medium. J. Hazard. Mat. 119:219-229.
  10. Beolchini, F., F. Pagnanelli, L. Toro, F. Veglio. 2006. Ionic strength effect on copper biosorption by Sphaerotilus natans: equilibrium study and dynamic modeling in membrane reactor. Wat. Res. 40:144-152. https://doi.org/10.1016/j.watres.2005.10.031
  11. Brady, J.M. and J.R. Duncan. 1993. Bioaccumulation of cations by Sacchromyces cerevisae in Biohydrometallurgical Technologies. Proceedings of the international biohydrometallurgical symposium, Torma, A.E., Apel, M.L. and Brierley, C.L., (eds), The Minerals, Metals and Materials Society, warrendale, PA. 35-44.
  12. Brady, J.M., J.M. Tobin, and J.C. Roux. 1999. Continuous fixed bed biosorption of $Cu^{2+}$ ions: application of a simple two parameter mathematical model, J. Chem. Tech. Biotechnol. 74:71-77. https://doi.org/10.1002/(SICI)1097-4660(199901)74:1<71::AID-JCTB985>3.0.CO;2-8
  13. Chaisuksant, Y. 2003. Biosorption of cadmium(II) and copper(II) by pretreated biomass of marine alga Gracilaria fisheri. Environ Technol. 24:1501-1508. https://doi.org/10.1080/09593330309385695
  14. Chang, J.S. and J. Hong. 1994. Biosorption of mercury by the inactivated cells of Pseudomonas aeruginosa PU 21 (Rip 64). Biotechnol. Bioeng. 44:999-1006. https://doi.org/10.1002/bit.260440817
  15. Chang J.S., R. Law, and C.C. Chang. 1997. Biosorption of lead, copper and cadmium by biomass of Pseudomonas aeruginosa PU21. Wat. Res. 31:1651-1658. https://doi.org/10.1016/S0043-1354(97)00008-0
  16. Chen, P. and Y.P. Ting. 1995. Effect of heavy metal uptake on the electrokinetic properties of Saccharomyces cerevisiae. Biotechnol. Lett. 17:107. https://doi.org/10.1007/BF00134205
  17. Chen, X.C., Y.P. Wang, Q. Lin, J.Y. Shi, W.X. Wu, and Y.X. Chen. 2005. Biosorption of copper(II) and zinc(II) from aqueous solution by Pseudomonas putida CZ1. Colloids Surf. B. Biointerfaces. 46:101-107. https://doi.org/10.1016/j.colsurfb.2005.10.003
  18. Chergui, M., Z. Bakhti, A. Chahboub, S. Haddoum, A. Selatnia, and G.A. Junter. 2007. Simultaneous Biosorption of $Cu^{2+}$, $Zn^{2+}$ and $Cr^{6+}$ from Aqueous Solution by Streptomyces rimosus Biomass. Desal. 206:179-184. https://doi.org/10.1016/j.desal.2006.03.566
  19. Cho, D.Y., S.T. Lee, S.W. Park, and A.S. Chung. 1994. Studies on the biosorption of heavy metals onto Chlorella vulgaris, J. Environ. Sci. Health. Part A. 29:389-409.
  20. Choi, S.B. and Y.S. Yun. 2004. Lead biosorption by waste biomass of Corynebacterium glutamicum generated from lysine fermentation process Biotechnol. Lett. 26:331-336. https://doi.org/10.1023/B:BILE.0000015453.20708.fc
  21. Chong, K.H. and B. Volesky. 1995. Description of 2-metal biosorption equilibria by Langmuir-type models. Biotechnol. Bioeng. 47:451-460. https://doi.org/10.1002/bit.260470406
  22. Collins, Y. E. and G. Stotzky. 1992. Heavy metals alter the electrokinetic properties of bacteria, yeasts and clay minerals. Appl. Environ. Microbiol. 58:1592-1600.
  23. Das, G., D.K. Thotala, S. Kapoor, S. Karunanithi, S.S. Thakur, N.S. Singh, and U. Varshney. 2008. Role of 16S ribosomal RNA methylations in translation initiation in Escherichia coli. EMBO J. 27:840-851. https://doi.org/10.1038/emboj.2008.20
  24. Delgado, A., A.M. Anselmo, and J.M. Novais. 1998. Heavy metal biosorption by dried powdered mycelium of Fusarium flocciferum. Water Environ. Res. 70:370-375. https://doi.org/10.2175/106143098X125019
  25. Dilek, F.B., A. Erbay, U. Yetis. 2002. Ni(II) biosorption by polyporus versicolor. Processes Biochem. 37:723-726. https://doi.org/10.1016/S0032-9592(01)00261-8
  26. Esposito, D., A.J. Hicks, and D.B. Stern. 2001. A role for initiation codon context in chloroplast translation. Plant Cell. 13:2373-2384. https://doi.org/10.1105/tpc.13.10.2373
  27. Febrianto, J., A,N. Kosasih, J. Sunarso, Y.H. Ju, N. Indraswati, and S. Ismadji. 2009. Equilibrium and kineticstudies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater. 162:616-645. https://doi.org/10.1016/j.jhazmat.2008.06.042
  28. Fourest, E. and J.C. Roux. 1992. Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH. Appl. Microbiol. Biotechnol. 37:399-403. https://doi.org/10.1007/BF00211001
  29. Fourest, E., C. Canal, and J.C. Roux. 1994. Improvement of heavy metals biosorption by mycelial dead biomass (Rhizopus arrhizus, Mucor meihi and Penicillium chrysogenum): pH control and cationic activation. FEMS Microbiol. Rev. 14:325-332. https://doi.org/10.1111/j.1574-6976.1994.tb00106.x
  30. Friis, N. and P.M. Keith. 1998. Biosorption of uranium and lead by Streptomyces longwoodensis. Biotechnol. Bioeng. 28:21-28.
  31. Gabr, R.M., S.H.A. Hassan, and A.A.M. Shoreit. 2008. Biosorption of lead and nickel by living and non-living cells of Pseudomonas aeruginosa ASU 6a. Int. Biodeterior. Biodegradation 62:195-203. https://doi.org/10.1016/j.ibiod.2008.01.008
  32. Gabriel, J., J. Vosahlo, and P. Baldrian. 1996. Biosorption of cadmium to mycelial pellets of wood-rotting fungi. Biotechnol. Lett. 10:345-348.
  33. Gadd, G. 1992. Metals and microorganisms: a problem of definition. FEMS Microbiol. Lett. 100:197-204. https://doi.org/10.1111/j.1574-6968.1992.tb14040.x
  34. Gadd, G.M. 1993. Interactions of fungi with toxic metals. New Phytol. 124:25-60. https://doi.org/10.1111/j.1469-8137.1993.tb03796.x
  35. Gadd, G.M. 1987. Fungal response towards heavy metals. In: Herbert, R.A. and Codd, G.A., Editors. 1987. Microbes in Extreme Environments, Academic Press, London. 84-109.
  36. Gadd, G.M., C. White, and L. de Rome. 1988. Heavy metal and radionuclide uptake by fungi and yeasts. In BioHydro Metallurgy: Proceedings of the International Symposium; Norris, P. R., Kelly, D. P., Eds.; Sci. Tech. Letters: Kew, Surrey, U.K. 421-436.
  37. Galun, M., E. Galun, B.Z. Siegel, P. Keller, H. Lehr, and S.M. Siegel. 1987. Removal of metal ions from aqueous solutions by Penicillium biomass: kinetic and uptake parameters. Water, Air Soil Poll. 33:359-371. https://doi.org/10.1007/BF00294204
  38. Godlewska Zylkiewicz, B. 2006. Microorganisms in inorganic chemical analysis. Anal. Bioanal. Chem. 38:114-123.
  39. Goksungur, Y., S. Uren, and U. Guvenc. 2005. Biosorption of Cadmium and Lead Ions by Ethanol Treated Waste Baker's Yeast Biomass." Bioresourc Technol. 96:103-109. https://doi.org/10.1016/j.biortech.2003.04.002
  40. Gonen, T.F., M. Yamac, A. Cabuk, and Z. Yildiz. 2008. Selection of newly isolated mushroom strains for tolerance and biosorption of zinc in vitro. J. Microbiol. Biotechnol. 18:483-489.
  41. Goyal, N., S.C. Jain, and U.C. Banerjee. 2003. Comparative studies on the microbial adsorption of heavy metals. Adv. Environ. Res. 7:311-319. https://doi.org/10.1016/S1093-0191(02)00004-7
  42. Hassan, S.H.A., S.J. Kim, A.Y. Jung, J.H. Joo, S.E. Oh, and J.E. Yang. 2009. Biosorptive capacity of Cd(II) and Cu(II) by lyophilized cells of Pseudomonas stutzeri. J. Gen. Appl. Microbiol. 55:27-34. https://doi.org/10.2323/jgam.55.27
  43. Ho, Y.S. and G. McKay. 1999. The sorption of lead(II) ions on peat. Water Res. 33:578-584. https://doi.org/10.1016/S0043-1354(98)00207-3
  44. Ho, Y.S. and G. McKay. 1998. The kinetics of sorption of basic dyes from aqueous solution by Sphagnum moss peat, Can. J. Chem. Eng. 76:822-827. https://doi.org/10.1002/cjce.5450760419
  45. Holan, Z.R. and B. Volesky. 1995. Accumulation of cadmium, lead and nickel by fungal and wood biosorbents. Appl. Biochem. Biotechnol. 53:133-146. https://doi.org/10.1007/BF02788603
  46. Huang, and C.P. Huang. 1996. Application of Aspergillus oryzae and Rhizopus oryzae for Cu(II) removal, Water Res. 30:1985-1990. https://doi.org/10.1016/0043-1354(96)00020-6
  47. Ivanov, K., E. Gruber, W. Schempp, and D. Kirov. 1996. "Possibilities of using zeolite as filler and carrier for dyestuffs in paper". Das Papier, 50:456460.
  48. Jarosz-Wilkolazka A., Kochmanska-Rdest J., Malarczyk E., Wardas W., and Leonowicz, A. 2002. Fungi and their ability to decolourize azo and anthraquinonic dyes. Enzyme Microb. Technol. 30:566-572. https://doi.org/10.1016/S0141-0229(02)00022-4
  49. Jarosz-Wilkolazka, A., M. Graz, B. Braha, S. Menge, and G.J. Krauss. 2006. Species-specific Cd-stress response in the white rot basidiomycetes Abortiporus biennis and Cerrena unicolor. Biometals. 19:39-49. https://doi.org/10.1007/s10534-005-4599-4
  50. Javaid, A. and R. Bajwa. 2008. Biosorption of electroplating heavy metals by some basidiomycetes. Mycopath. 6:1-6.
  51. Javaid, A. and S. Shafique. 2010. Herbicidal effects of extracts and residue incorporation of Datura metel against parthenium weed. Nat. Prod. Res. 24:1426-1437. https://doi.org/10.1080/14786410903075440
  52. Jonglertjunya, W. 2008. Biosorption of lead(II) and copper(II) from aqueous solution. Chiang Mai Journal of Science. 35:69-81.
  53. Joo, J.H. S.H.A. Hassan, and S.E. Oh. 2010. Comparative study of biosorption of $Zn^{2+}$ by Pseudomonas aeruginosa and Bacillus cereus. Int. Biodet. Biodegrad. 64:734-741. https://doi.org/10.1016/j.ibiod.2010.08.007
  54. Kadukova, J. and E. Vircikova. 2005. Comparison of differences between copper bioaccumulation and biosorption. Environ. Int. 31:227-232. https://doi.org/10.1016/j.envint.2004.09.020
  55. Kaewsarn, P. 2002. Biosorption of copper(II) from aqueous solutions by pre-treated biomass of marine algae Padina sp. Chemosphere. 47:1081-1085. https://doi.org/10.1016/S0045-6535(01)00324-1
  56. Kao, W.C., C.C. Huang, and J.S. Chang. 2008. Biosorption of nickel, chromium and zinc by MerP-expressing recombinant Escherichia coli. J. Hazard. Mater. 158:100-106. https://doi.org/10.1016/j.jhazmat.2008.01.032
  57. Kapoor, A. and T. Viraraghavan. 1997. Heavy metal biosorption sites in Aspergillus niger. Biores. Technol. 61:221-227. https://doi.org/10.1016/S0960-8524(97)00055-2
  58. Kapoor, A. and T. Viraraghavan. 1995. Fungi biosorption-an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresour. Technol. 53:195-206.
  59. Kapoor, A. and T. Viraraghavan. 1998. Biosorption of Heavy Metals on Aspergillus niger: Effect of Pretreatment. Bioresour. Technol. 63:109-113. https://doi.org/10.1016/S0960-8524(97)00118-1
  60. Karna, R.R., L. Uma, G. Subramanian, and P.M. Mohan. 1999. Biosorption of toxic metal ions by alkali-extracted biomass of a marine cyanobacterium, Phormidium valderianum BDU 30501. World J. Microbiol. Biotechnol. 15:729-732. https://doi.org/10.1023/A:1008992510890
  61. Kiff, R.J. and D.R. Little. 1986. Biosorption of Heavy Metals by Immobilized Fungal Biomass. In Immobilization of Ions by Biosorption, H. H. Eccles and S. Hunt, eds., Ellis Horwood, Chichester, West Sussex. 71.
  62. Khambhaty, Y., K. Mody, S. Basha, and B. Jha. 2009. Biosorption of Cr(VI) onto marine Aspergillus niger: experimental studies and pseudo-second order kinetic. World J Microbiol. Biotechnol. 25:1413:1421
  63. Klimmek, S., H.J. Stan, A. Wilke, G. Bunke, and R. Buchholz. 2001. Comparative analysis of the biosorption of cadmium, lead, nickel, and zinc by algae. Environ. Sci. Technol. 35:4283-4288. https://doi.org/10.1021/es010063x
  64. Kratochvil, D. and B. Volesky. 1998. Advances in the biosorption of heavy metals. Trends Biotechnol. 16:291-300. https://doi.org/10.1016/S0167-7799(98)01218-9
  65. Kumar, R., N.R. Garima, and K. Bishnoi. 2008. Biosorption of chromium(VI) from aqueous solution and electroplating wastewater using fungal biomass. Chem. Eng. J. 135:202-208. https://doi.org/10.1016/j.cej.2007.03.004
  66. Kumar V, L. Wati, P. Nigam, B.S. Yadav, D. Singh, and R. Marchant. 1998. Decolorization and biodegradation of anaerobically digested surgarcane molasses spent wash effluent from biomethanation plants by white-rot fungi. Process Biochem. 33:83-88. https://doi.org/10.1016/S0032-9592(97)00047-2
  67. Kuyucak, N. and B. Volesky. 1988. Biosorbents for recovery of metals from industrial solutions. Biotechnol. Lett. 10:137-142. https://doi.org/10.1007/BF01024641
  68. Leung W.C., H. Chua, and W.H. Lo. 2001. Biosorption of heavymetals by bacteria isolated from activated sludge. Appl. Biochem. Biotechnol. 91:171-84. https://doi.org/10.1385/ABAB:91-93:1-9:171
  69. Li, Q, S. Wu, G. Liu, X. Liao, and X. Deng. 2004. Daohua Sun, Yuelin Hu, Yili Huang. Simultaneous biosorption of cadmium(II) and lead(II) ions by pretreated biomass of Phanerochaete chrysosporium. Sep. Purif. Technol. 34:135-142. https://doi.org/10.1016/S1383-5866(03)00187-4
  70. Lin, C.C. and Y.T. Lai. 2006. Adsorption and recovery of lead(II) from aqueous solutions by immobilized Pseudomonas aeruginosa PU21 beads. J. Hazard. Mater. 137:99-105. https://doi.org/10.1016/j.jhazmat.2006.02.071
  71. Loukidou, M.X., A.I. Zouboulis, T.D. Karapantsios, and K.A. Matis. 2004. Equilibrium and kinetic modeling of chromium (VI) biosorption by Aeromonas caviae. Colloids and Surfaces A: Physicochem. Eng. Aspects. 242:93-104. https://doi.org/10.1016/j.colsurfa.2004.03.030
  72. Lu, W.B., J.J. Shi, C.H. Wang, and J.S. Chang. 2006. Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance. J. Hazard. Mater. 134:80-86. https://doi.org/10.1016/j.jhazmat.2005.10.036
  73. Malik, A. 2004. Metal bioremediation through growing cells. Environ. Int. 30:261-278. https://doi.org/10.1016/j.envint.2003.08.001
  74. Mameri, N., N. Boudries, L. Addour, D. Belhocine, H. Lounici, H. Grib, and A. Pauss. 1999. Batch zinc biosorption by a bacterial nonliving Streptomyces rimosus biomass. Wat. Res. 33:1347-1354. https://doi.org/10.1016/S0043-1354(98)00349-2
  75. Mapoleto, M. and N. Torto. 2004. Trace enrichment of metal ions in aquatic environments by Saccharomyces cerevisiae. Talanta. 64:39-47. https://doi.org/10.1016/j.talanta.2003.10.058
  76. Mapoleto, M., N. Torto, and B. Prior. 2005. Evaluation of yeast strains as possible agents for trace enrichment of metal ions in aquatic environments. Talanta. 65:930-937. https://doi.org/10.1016/j.talanta.2004.08.020
  77. Massaccesi, G., M.C. Romero, M.C. Cazau, and A.M. Bucsinszky. 2002. Cadmium removal capacities of filamentous soil fungi isolated from industrially polluted sediments, in La Plata (Argentina). W. J. Microbiol. Biotechnol. 18:817-820. https://doi.org/10.1023/A:1021282718440
  78. Mattuschka, B. and G. Strauble. 1993. Biosorption of metals by a waste biomass. J. Chem. Tech. Biotechnol. 58:57-63.
  79. Mattuschka, B., K. Junghaus, and G. Straube. 1993. Biosorption of metals by waste biomass, in Biohydrometallurgical Technologies. Proceedings of the international biohydrometallurgical symposium, Torma, A.E., Apel, M.L. and Brierley, C.L., (eds), The Minerals, Metals and Materials Society, Warrendale, PA.
  80. Mongollon, L., R. Rodriquez, W. Larrota, N. Ramirez, and R. Torres. 1998. Biosorption of nickel using filamentos fungi. Appl. Biochem. Biotehnol. 70:593-601. https://doi.org/10.1007/BF02920171
  81. Morillo J.A., R. Garcia-Ribera, T. Quesada, M. Aguilera, A. Ramos-Cormenzana, and Monteoliva-Sanchez M. 2008. Biosorption of heavy metals by the EPS produced by Paenibacillus jamilae. World J. Microbiol. Biotechnol. 24:2699-2704. https://doi.org/10.1007/s11274-008-9800-9
  82. Mukhopadhyay, M., S.B. Noronha, and G.K. Suraishkuma. 2007. Kinetic modeling for the biosorption of copper by pretreated Aspergillus niger biomass. Bioresource Technol. 98:1781-1787. https://doi.org/10.1016/j.biortech.2006.06.025
  83. Mullen, M.D., D.C. Wolf, T.J. Beveridge, and G.W. Bailey. 1992. Sorption of heavy metals by the soil fungi Aspergillus niger and Mucor rouxii. Soil Biol. and Biochem. 24(2):129-135. https://doi.org/10.1016/0038-0717(92)90268-3
  84. Nakajima, A., M. Yasuda, H. Yokoyama, H. Ohya-Nishiguchi, and H. Kamada. 2001. Copper biosorption by chemically treated Micrococcus luteus cells. World J Microbiol Biotechnol. 17: 343-347. https://doi.org/10.1023/A:1016638230043
  85. Niu, H, X.S. Xu, J.H. Wang, and B. Volesky. 1993. Removal of lead from aqueous solutions by Penicillium biomass. Biotechnol. Bioeng. 42:785-787. https://doi.org/10.1002/bit.260420615
  86. Norton, L., K. Baskaran, and T. McKenzie. 2004. Biosorption of zinc from aqueous solutions using biosolids. Adv Environ Res. 8:629-35. https://doi.org/10.1016/S1093-0191(03)00035-2
  87. Ozer, A. and D. Ozer. 2003. Comparative study of the biosorption of Pb(II), Ni(II) and Cr(VI) ions onto S. cerevisiae: determination of biosorption heats. J. Hazardous Mater. 100:219-229. https://doi.org/10.1016/S0304-3894(03)00109-2
  88. Ozturk A., T. Artan, and A. Ayar. 2004. Biosorption of nickel(II) and copper(II) ions from aqueous solution by Streptomyces coelicolor A3 (2). Colloids Surf B Biointerfaces. 34:105-11. https://doi.org/10.1016/j.colsurfb.2003.11.008
  89. Pagnanelli, F., M. Papini, M. Trifoni, L. Toro, and F. Veglio. 2000. Biosorption of metal ions on Arthrobacter sp.: Biomass characterization and biosorption modeling. Environ. Sci. Technol. 34:2773-2778. https://doi.org/10.1021/es991271g
  90. Pardo R., M. Herguedas, E. Barrado, and M. Vega. 2003. Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida. Anal. Bioanal. Chem. 376:26-32.
  91. Park, D., Y.S. Yun, and J.M., Park. 2005. Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia sp. Chemosphere. 60(10):1356-1364. https://doi.org/10.1016/j.chemosphere.2005.02.020
  92. Parvathi, K. 2007. Lead biosorption onto waste beer yeast by-product, a means to decontaminate effluent generated from battery manufacturing industry. Electronic J. Biotechnol. 10:92-105.
  93. Perez, S., R.M, A.A. Rodriguez, M. Gomez, De.Oca. J.M. Cantero, and D. Moreno. 2009. Biosorption of chromium, copper, manganese and zinc by Pseudomonas aeruginosa AT18 isolated from a site contaminated with petroleum. Bioresour. Technol. 100:1533-1538. https://doi.org/10.1016/j.biortech.2008.06.057
  94. Puranik, P.R. and K.M. Paknikar. 1997. Biosorption of lead and zinc from solutions using Streptoverticillium cinnamoneum waste biomass, J. Biotechnol. 55:113-124. https://doi.org/10.1016/S0168-1656(97)00067-9
  95. Puranik, P.R., N.S. Chabukswar, and K.M. Paknikar. 1995. Cadmium biosorption by Streptomyces pimprina waste biomass. Appl Microbiol Biotechnol. 43:1118-1121. https://doi.org/10.1007/BF00166935
  96. Puranik, P.R. and K.M. Paknikar. 1999. Biosorption of lead, cadmium and zinc by Citrobacter strain MCM B-181: characterization studies. Biotechnol. Progress. 15:228-237. https://doi.org/10.1021/bp990002r
  97. Purvis, O.W. and C. Halls. 1996. A review of lichens in metalenriched environments. Lichenologist 28:571-601. https://doi.org/10.1017/S0024282996000758
  98. Rao, C.R.N., L. Iyengar, and C. Venkobachar. 1993. Sorption of copper(II) from aqueous phase by waste biomass. J. Environ. Eng. Division, Proceed. ASCE. 119:369-377. https://doi.org/10.1061/(ASCE)0733-9372(1993)119:2(369)
  99. Rashmi, K., S.T. Naga, P.V. MaruthiMohan, and G.V enkateswaran. 2004. Bioremediation of 60Co from simulated spent decontamination solutions. Sci. Total. Environ. 328:1-14. https://doi.org/10.1016/j.scitotenv.2004.02.009
  100. Razmovski, R. and Sciban. M. (2008): Iron(III) biosorption by Polyporus squamosus. Afri. J. Biotechnol. 7:1693-1699.
  101. Ruiz, M.A., P.I. Magana, V. Lopez, and R. Guzman. 1997. Biosorption of Cu by Thiobacillus ferrooxidans. Bioprocess. Eng. 18:113-118.
  102. Sag, Y., A. Kaya, and T. Kustal. 2000. Lead copper and zinc biosorption from biocomponet systems modelled by empirical Freundlich isotherm. Appl. Microbiol. Biotechnol., 53:338-341. https://doi.org/10.1007/s002530050031
  103. Sag, Y. and T. Kutsal. 2000. Determination of the biosorption heats of heavy metal ions on Zoogloea ramigera and Rhizopus arrhizus. Biochem. Eng. J. 6:145-151. https://doi.org/10.1016/S1369-703X(00)00083-8
  104. Saiano, F., M. Cacciola, O. Santa, and S. Ramirez. 2005. Metal ion adsorption by Phomopsis sp. biomaterial in laboratory experiments and real wastewater treatments. Wat. Res. 39:2273-2280. https://doi.org/10.1016/j.watres.2005.04.022
  105. Sakaguchi, T. and A. Nakajima. 1991. Accumulation of Heavy Metals such as Uranium and Thoruim by Microorganisms. In Mineral Bioprocessing," R. W. Smith and M. Misra, eds., The Minerals, Metals and Materials Society. Pennsylvania. p.85.
  106. Savvaidis, I., M.N. Hughes, and R.K. Poole. 2003. Copper biosorption by Pseudomonas cepacia and other strains. World J Microbiol Biotechnol. 19:117-121. https://doi.org/10.1023/A:1023284723636
  107. Say, R., A. Denizli, and A.M. Yakup. 2001. Biosorption of cadmium(II), lead(II) and copper(II) with the filamentous fungus Phanerochaete chrysosporium. Bioresour. Technol. 76:67-70. https://doi.org/10.1016/S0960-8524(00)00071-7
  108. Selatnia, A., A. Boukazoula, N. Kechid, M.Z. Bakhti, A. Chergui, and Y. Kerchich. 2004. Biosorption of lead(II) from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Biochem. Eng. J. 19:127-135. https://doi.org/10.1016/j.bej.2003.12.007
  109. Sing, C. and J. Yu. 1998. Copper adsorption and removal from water by living mycelium of white-rot fungus Phanerochaete chrysosporium. Water Res. 32:2746-2752. https://doi.org/10.1016/S0043-1354(98)00024-4
  110. Singh, H. 2006. Mycoremediation: Fungal Bioremediation. John Wiley and Sons Publication, USA. 19-25.
  111. Tewari, N., P. Vasudevan, and B.K. Guha. 2005. Study on biosorption of Cr(VI) by Mucor hiemalis. Biochem. Eng. J. 23:185-192. https://doi.org/10.1016/j.bej.2005.01.011
  112. Tobin, J.M., D.G. Cooper, and R.J. Neufeld. 1984. Uptake of metal ions by Rhizopus arrhizus biomass, Appl. Environ. Microbiol. 47:821-824.
  113. Tobin, J.M. and J.C. Roux. 1998. Mucor biosorbent for chromium removal from tanning effluent. Water Res. 32:1407-1416. https://doi.org/10.1016/S0043-1354(97)00343-6
  114. Tomko, J., M. Backor, and M. Stofko. 2006. Biosorption of heavy metals by dry fungi biomass. Acta Metallurgica Slovaca. 12:447-451.
  115. Tsezos, M. and B. Volesky. 1981, Biosorption of uranium and thorium, Biotechnol. Bioeng. 23:583-604. https://doi.org/10.1002/bit.260230309
  116. Tsezos, M., E. Remoudaki, and V. Angelatou. 1995. Systematic study on equilibrium and kinetics of biosorptive accumulation. The case of Ag and Ni. Int. Biodet. Biodeg. 35:331-332.
  117. Tunali, S., T. Akar, A. Safazcan, I. Kiran, and A. Ozcan. 2006. Equilibrium and kinetics of biosorption of lead(II) from aqueous solutions by Cephalosporium aphidicola. Sep. Purif. Technol. 47:105-112. https://doi.org/10.1016/j.seppur.2005.06.009
  118. Tuzen, M., K.O. Saygi, C. Usta, and M. Soylak. 2008. Pseudomonas aeruginosa immobilized multiwalled carbon nanotubes as biosorbent for heavy metal ions. Bioresour. Technol. 99:1563-1570. https://doi.org/10.1016/j.biortech.2007.04.013
  119. Uslu, G. and M. Tanyol. 2006. Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead (II) and copper(II) ions onto Pseudomonas putida: Effect of temperature J. Hazard Mater. 135:3187-3193.
  120. Veglio, F., F. Beolchini, and A. Gasbarro. 1997. Biosorption of toxic metals: an equilibrium study using free cells of Arthrobacter sp. Process Biochem. 2:99-105.
  121. Veglio, F. and F. Beolchini. 1997. Removal of metals by biosorption: a review. Hydrometallurgy 44:301-16. https://doi.org/10.1016/S0304-386X(96)00059-X
  122. Veit, M.T., R.G. Tavares, S.M. Gomes-da-Costa, and T.A. Guedes. 2005. Adsorption isotherms of copper(II) for two species of dead fungi biomass. Processes. Biochem. 40:3303-3308. https://doi.org/10.1016/j.procbio.2005.03.029
  123. Vimala, R. and N. Das. 2009. Biosorption of cadmium(II) and lead(II) from aqueous solutions using mushrooms: A comparative study. J. Hazard. Mater. 168:376-382. https://doi.org/10.1016/j.jhazmat.2009.02.062
  124. Volesky, B. 1990. Biosorption by fungal biomass. In: Volesky B, Biosorption of heavy metals. Florida: CRC press. 140-171.
  125. Volesky, B. and Z.R. Holan. 1995. Biosorption of heavy metals. Biotechnol. Prog. 11:235-250. https://doi.org/10.1021/bp00033a001
  126. Volesky, B. 1994. Advances in biosorption of metals: selection of biomass types. FEMS Microbiol. Rev. 14:291-302. https://doi.org/10.1111/j.1574-6976.1994.tb00102.x
  127. Volesky, B. 1990. Biosorption and biosorbents, in Biosorption of heavy metals, edited by Volesky, B. (CRC Press, Boca Raton, Florida) 3-5.
  128. Volesky, B. 2003. Sorption and biosorption BV Sorbex, Inc. Montreal-St. Lambert, Quebec, Canda.
  129. Volesky, B., H. May, and Z.R. Holan. 1993. Cadmium biosorption by Saccharomyces cerevisiae. Biotechnol. Bioeng. 41:826-829. https://doi.org/10.1002/bit.260410809
  130. Wang, G.X., M.C. Fuerstenau, and R.W. Smith. 1997. The mechanism of lead removal by nonliving water hyacinth roots. In: Hoberg, H., von Blottnitz, H. ŽEds.., Proceedings of the XX International Mineral Processing Congress. 5:615-628.
  131. Wang, J. and C. Chen. 2006. Biosorption of heavy metals by Saccharomyces cerevisiae: a review, Biotechnol. Adv. 24:427-451. https://doi.org/10.1016/j.biotechadv.2006.03.001
  132. Wang, J.L. and C. Chen. 2009. Biosorbents for heavy metals removal and their future a review. Biotechnol. Adv. 27:195-226. https://doi.org/10.1016/j.biotechadv.2008.11.002
  133. Xia, Y. and C. Liyuan. 2002. Study of gelatinous Supports for Immobilizing Inactivated Cells of Rhizopus oligosporus to Prepare Biosorbent for Lead Ions, The Int J Environ Studies. 5:1-6.
  134. Yakubu, N.A. and A.W.L. Dudeney. 1986. "Biosorption of uranium with Aspergillus niger. In Immobilization of Ions by Biosorption," H. H. Eccles and S. Hunt, eds., Ellis Horwood, Chichester, West Sussex. P.183.
  135. Yan, G. and Viraraghavan. 2000. Effect of pretreatment on the bioadsorption of heavy metals on Mucor rouxii. Water SA. 26:119-123.
  136. Yan, G. and T. Viraraghavan. 2003. Heavy metals removal from aqueous solution by fungus mucor rouxii. Wat Rese. 37:4486-4496. https://doi.org/10.1016/S0043-1354(03)00409-3
  137. Yan, G. and T. Viraraghavan. 2008. Mechanism of Biosorption of Heavy Metals by Mucor rouxii, Eng Life Sci. 8:363-371. https://doi.org/10.1002/elsc.200820237
  138. Yetis, U, G. Ozcengiz, F.B. Dilek, N. Ergen, A. Erbay, and A. Dolek. 1998. Heavy metal biosorption by white-rot fungi. Water Sci. Technol. 38:323-330.
  139. Yetis, U., A. Dolek, F.B. Dilek, and G. Ozcengiz. 2000. The removal of Pb(II) by Phanerochaete chrysosporium. Wat. Res. 34:4090-4100. https://doi.org/10.1016/S0043-1354(00)00155-X
  140. Yilmaz, E.I. and N.Y. Ensari. 2005. Cadmium biosorption by Bacillus circulans strain EB1. World J. Microbiol. Biotechnol. 21:777-779. https://doi.org/10.1007/s11274-004-7258-y
  141. Yin, P., Q. Yu, B. Jin, and Z. Ling. 1999. Biosorption removal of cadmium from aqueous solution by using pretreated fungal biomass cultured from starch wastewater. Wat. Res. 33:1960-1963. https://doi.org/10.1016/S0043-1354(98)00400-X
  142. Zhou, J. L. 1999. Zinc biosorption by Rhizopus arrhizus and other fungi. Appl. Microbiol. Biotech. 51:686-693. https://doi.org/10.1007/s002530051453
  143. Ziagova, M., G. Dimitriadis, D. Aslanidou, X. Papaioannou, E.L. Tzannetaki, and M. Kyriakides. 2007. Comparative study of Cd(II) and Cr(VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures. Bioresour. Technol. 98:2859-2865. https://doi.org/10.1016/j.biortech.2006.09.043