• Title/Summary/Keyword: resin acid

Search Result 775, Processing Time 0.026 seconds

Removal of Nitrate-Nitrogen in Pickling Acid Wastewater from Stainless Steel Industry Using Electrodialysis and Ion Exchange Resin (전기투석과 이온교환수지를 이용한 스테인레스 산업의 산세폐수 내 질산성 질소의 제거)

  • Yun, Young-Ki;Park, Yeon-Jin;Oh, Sang-Hwa;Shin, Won-Sik;Choi, Sang-June;Ryu, Seung-Ki
    • Journal of Environmental Science International
    • /
    • v.18 no.6
    • /
    • pp.645-654
    • /
    • 2009
  • Lab-scale Electrodialysis(ED) system with different membranes combined with before or after pyroma process were carried out to remove nitrate from two pickling acid wastewater containing high concentrations of $NO_3\;^-$(${\approx}$150,000 mg/L) and F($({\approx}$ 160,000 mg/L) and some heavy metals(Fe, Ti, and Cr). The ED system before Pyroma process(Sample A) was not successful in $NO_3\;^-$ removal due to cation membrane fouling by the heavy metals, whereas, in the ED system after Pyroma process(Sample B), about 98% of nitrate was removed because of relatively low $NO_3\;^-$ concentration (about 30,000 mg/L) and no heavy metals. Mono-selective membranes(CIMS/ACS) in ED system have no selectivity for nitrate compared to divalent-selective membranes(CMX/AMX). The operation time for nitrate removal time decreased with increasing the applied voltage from 10V to 15V with no difference in the nitrate removal rate between both voltages. Nitrate adsorption of a strong-base anion exchange resin of $Cl\;^-$ type was also conducted. The Freundlich model($R^2$ > 0.996) was fitted better than Langmuir mode($R^2$ > 0.984) to the adsorption data. The maximum adsorption capacity ($Q^0$) was 492 mg/g for Sample A and 111 mg/g for Sample B due to the difference in initial nitrate concentrations between the two wastewater samples. In the regeneration of ion exchange resins, the nitrate removal rate in the pickling acid wastewater decreased as the adsorption step was repeated because certain amount of adsorbed $NO_3\;^-$ remained in the resins in spite of several desorption steps for regeneration. In conclusion, the optimum system configuration to treat pickling acid wastewater from stainless-steel industry is the multi-processes of the Pyroma-Electrodialysis-Ion exchange.

Adsorptive Stripping Voltammetry of Ge(IV)-Mercaptoacetic Acid Complex (Ge(Ⅳ)-Mercaptoacetic Acid 착물에 의한 흡착벗김 전압-전류법)

  • Park, Chan Il;Seong, Suk Hee;Cha, Ki Won
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.1
    • /
    • pp.36-41
    • /
    • 1999
  • The adsorptive stripping voltammetric determination method of trace germanium (IV) using mercaptoacetic acid as a ligand was studied. Optimal conditions were found to be 0.25 M NaCl solution (pH 6.0) containing mercaptoacetic acid concentration of $5.0{\times}10^{-6}M$. The peak potential appeared at - 1.402 V vs. Ag/AgCl. Effects of sodium chloride concentration, mercaptoacetic acid concentration, and accumulation time for the complex of Ge(IV)-Mercaptoacetic acid on the peak current were studied. Amberlite IRC-718 chelating resin was applied to the separation of Ge(IV) from other metal ions.

  • PDF

Production of Levulinic Acid from Glucosamine Using Solid Acid Catalyst (고체 산촉매를 이용한 글루코사민으로부터 레불린산 생산)

  • Park, Mi-Ra;Kim, Hyo Seon;Kim, Sung-Koo;Jeong, Gwi-Taek
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.61-65
    • /
    • 2018
  • In this study, the conversion of glucosamine, which is a major monomer in chitin/chitosan of crustacean shell, using solid acid catalyst was performed to obtain chemical intermediates such as levulinic acid and 5-hydroxymethyl furfural (5-HMF). The conversion reaction was optimized with four reaction factors of selection of ionic resin catalyst, reaction temperature, catalyst amount, and reaction time. As an optimized result, the highest levulinic acid yield was achieved approximately 36.86% under the determined conditions (Amberlyst 15 as a solid-acid catalyst, $180^{\circ}C$, 5% catalyst amount and 60 min). On the other hand, 5-HMF yield was found to be 0.91% at the condition.

Effects of laser-irradiated dentin on shear bond strength of composite resin (레이저 처리가 상아질과 복합 레진의 결합에 미치는 영향)

  • Kim, Sung-Sook;Park, Jong-Il;Lee, Jae-In;Kim, Gye-Sun;Cho, Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.5
    • /
    • pp.520-527
    • /
    • 2008
  • Purpose: This study was conducted to evaluate the shear bond strength of composite resin to dentin when etched with laser instead of phosphoric acid. Material and methods: Recently extracted forty molars, completely free of dental caries, were embedded into acrylic resin. After exposing dentin with diamond saw, teeth surface were polished with a series of SiC paper. The teeth were divided into four groups composed of 10 specimens each; 1) no surface treated group as a control 2) acid-etched with 35%-phosphoric acid 3) Er:YAG laser treated 4) Er,Cr:YSGG laser treated. A dentin bonding agent (Adapter Single Bond2, 3M/ESPE) was applied to the specimens and then transparent plastic tubes (3 mm of height and diameter) were placed on each dentin. The composite resin was inserted into the tubes and cured. All the specimens were stored in distilled water at $37^{\circ}C$ for 24 hours and the shear bond strength was measured using a universal testing machine (Z020, Zwick, Germany). The data of tensile bond strength were statistically analyzed by one-way ANOVA and Duncan's test at ${\alpha}$= 0.05. Results: The bond strengths of Er:YAG laser-treated group was $3.98{\pm}0.88$ MPa and Er,Cr:YSGG laser-treated group showed $3.70{\pm}1.55$ MPa. There were no significant differences between two laser groups. The control group showed the lowest bond strength, $1.52{\pm}0.42$ MPa and the highest shear bond strength was presented in acid-etched group, $7.10{\pm}1.86$ MPa (P < .05). Conclusion: Laser-etched group exhibited significantly higer bond strength than that of control group, while still weaker than that of the phosphoric acid-etched group.

Experimental Studies on the Properties of Epoxy Resin Mortars (에폭시 수지 모르터의 특성에 관한 실험적 연구)

  • 연규석;강신업
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.1
    • /
    • pp.52-72
    • /
    • 1984
  • This study was performed to obtain the basic data which can be applied to the use of epoxy resin mortars. The data was based on the properties of epoxy resin mortars depending upon various mixing ratios to compare those of cement mortar. The resin which was used at this experiment was Epi-Bis type epoxy resin which is extensively being used as concrete structures. In the case of epoxy resin mortar, mixing ratios of resin to fine aggregate were 1: 2, 1: 4, 1: 6, 1: 8, 1:10, 1 :12 and 1:14, but the ratio of cement to fine aggregate in cement mortar was 1 : 2.5. The results obtained are summarized as follows; 1.When the mixing ratio was 1: 6, the highest density was 2.01 g/cm$^3$, being lower than 2.13 g/cm$^3$ of that of cement mortar. 2.According to the water absorption and water permeability test, the watertightness was shown very high at the mixing ratios of 1: 2, 1: 4 and 1: 6. But then the mixing ratio was less than 1 : 6, the watertightness considerably decreased. By this result, it was regarded that optimum mixing ratio of epoxy resin mortar for watertight structures should be richer mixing ratio than 1: 6. 3.The hardening shrinkage was large as the mixing ratio became leaner, but the values were remarkably small as compared with cement mortar. And the influence of dryness and moisture was exerted little at richer mixing ratio than 1: 6, but its effect was obvious at the lean mixing ratio, 1: 8, 1:10,1:12 and 1:14. It was confirmed that the optimum mixing ratio for concrete structures which would be influenced by the repeated dryness and moisture should be rich mixing ratio higher than 1: 6. 4.The compressive, bending and splitting tensile strenghs were observed very high, even the value at the mixing ratio of 1:14 was higher than that of cement mortar. It showed that epoxy resin mortar especially was to have high strength in bending and splitting tensile strength. Also, the initial strength within 24 hours gave rise to high value. Thus it was clear that epoxy resin was rapid hardening material. The multiple regression equations of strength were computed depending on a function of mixing ratios and curing times. 5.The elastic moduli derived from the compressive stress-strain curve were slightly smaller than the value of cement mortar, and the toughness of epoxy resin mortar was larger than that of cement mortar. 6.The impact resistance was strong compared with cement mortar at all mixing ratios. Especially, bending impact strength by the square pillar specimens was higher than the impact resistance of flat specimens or cylinderic specimens. 7.The Brinell hardness was relatively larger than that of cement mortar, but it gradually decreased with the decline of mixing ratio, and Brinell hardness at mixing ratio of 1 :14 was much the same as cement mortar. 8.The abrasion rate of epoxy resin mortar at all mixing ratio, when Losangeles abation testing machine revolved 500 times, was very low. Even mixing ratio of 1 :14 was no more than 31.41%, which was less than critical abrasion rate 40% of coarse aggregate for cement concrete. Consequently, the abrasion rate of epoxy resin mortar was superior to cement mortar, and the relation between abrasion rate and Brinell hardness was highly significant as exponential curve. 9.The highest bond strength of epoxy resin mortar was 12.9 kg/cm$^2$ at the mixing ratio of 1:2. The failure of bonded flat steel specimens occurred on the part of epoxy resin mortar at the mixing ratio of 1: 2 and 1: 4, and that of bonded cement concrete specimens was fond on the part of combained concrete at the mixing ratio of 1 : 2 ,1: 4 and 1: 6. It was confirmed that the optimum mixing ratio for bonding of steel plate, and of cement concrete should be rich mixing ratio above 1 : 4 and 1 : 6 respectively. 10.The variations of color tone by heating began to take place at about 60˚C, and the ultimate change occurred at 120˚C. The compressive, bending and splitting tensile strengths increased with rising temperature up to 80˚ C, but these rapidly decreased when temperature was above 800 C. Accordingly, it was evident that the resistance temperature of epoxy resin mortar was about 80˚C which was generally considered lower than that of the other concrete materials. But it is likely that there is no problem in epoxy resin mortar when used for unnecessary materials of high temperature resistance. The multiple regression equations of strength were computed depending on a function of mixing ratios and heating temperatures. 11.The susceptibility to chemical attack of cement mortar was easily affected by inorganic and organic acid. and that of epoxy resin mortar with mixing ratio of 1: 4 was of great resistance. On the other hand, when mixing ratio was lower than 1 : 8 epoxy resin mortar had very poor resistance, especially being poor resistant to organicacid. Therefore, for the structures requiring chemical resistance optimum mixing of epoxy resin mortar should be rich mixing ratio higher than 1: 4.

  • PDF

Investigation of Compressive Strength and Foaming Characteristics of Acid Anhydride Epoxy Foam by Foaming Agent (발포제에 따른 산무수물계 에폭시 폼의 압축강도 및 포밍특성 분석)

  • Kwon, Dong-Jun;Kim, Jong-Hyun;Park, Sung-Min;Kwon, Il-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.133-138
    • /
    • 2018
  • Polymer foams were used to fill the void in the structure in addition to flame retardant and heat insulation. Polymer foams such as polyurethane, polyisocyanurate, poly(vinyl chloride), polyethylene terephthalate were used to weight lighting materials. In this study, epoxy foam was used to improve mechanical properties of polymer foam. Acid anhydride type hardener reacts with polyol. Using this phenomenon, if blowing agent was added into epoxy resin using acid anhydride type hardener, formation and compressive properties of epoxy foam was studied. Formation of polymer foam was compared with type of blowing agent and concentration of blowing agent via compressive test. As these results, optimized condition of epoxy foam was found and epoxy foam had better compressive property than other polymer foam.

Effect of Surface Treated SiC on Thermal Stability and Mechanical Interfacial Properties of Carbon Fiber/Epoxy Resin Composites (탄소섬유 강화 에폭시 수지 복합재료의 열안정성 및 기계적 계면특성에 미치는 SiC 표면처리 영향)

  • 박수진;오진석;이재락;이경엽
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.25-31
    • /
    • 2003
  • In this work the effect of surface treated SiC on thermal stability and mechanical interfacial properties of carbon fiber/epoxy resin composites. The surface properties of the SiC were determined by acid/base values and contact angles. The thermal stabilities of carbon fiber/epoxy resin composites were investigated by TGA. The mechanical interfacial properties of the composites were studied in ILSS, critical stress intensity factor ($\textrm{K}_{IC}$), and critical strain energy release rate($\textrm{G}_{IC}$) measurements. As a result, the acidically treated SiC(A-SiC) had higher acid value than untreated SiC(V-SiC) or basically treated SiC(B-SiC). According to the contact angle measurements, it was observed that chemical treatments led to an increase of surface free energy of the SiC surfaces, mainly due to the increase of the specific(polar) component. The mechanical interfacial properties of the composites including ILSS, $\textrm{K}_{IC}$, and $\textrm{G}_{IC}$ had been improved in the specimens treated by chemical solutions. These results were explained that good wetting played an important role in improving the degree of adhesion at interfaces between SiC and epoxy resin matrix.

Modification of surface pretreatment of white spot lesions to improve the safety and efficacy of resin infiltration

  • Yim, Hyun-Kyung;Min, Ji-Hyun;Kwon, Ho-Keun;Kim, Baek-Il
    • The korean journal of orthodontics
    • /
    • v.44 no.4
    • /
    • pp.195-202
    • /
    • 2014
  • Objective: A low-viscosity resin (infiltrant) was used to inhibit the progression of white spot lesions (WSLs) and resolve associated esthetic issues. An alternative pretreatment was explored to increase the pore volume of the surface layer of the WSLs. Also, the penetration effects of the infiltrant were evaluated for various pretreatments. Methods: Sixty two artificial lesions were fabricated on bovine teeth. As a positive control, 15% HCl gel was applied for 120 seconds. Further, 37% $H_3PO_4$ gel was applied for 30 seconds using three methods. The samples were divided as follows: $H_3PO_4$ only group, $H_3PO_4$ sponge group, and $H_3PO_4$ brush group. The acid was gently rubbed with the applicators (i.e., a sponge or brush) throughout the application time. To compare the effects of resin infiltration, twenty paired halves of specimens were treated with an infiltrant (ICON$^{(R)}$). Results: Thicknesses of the removed surface layers and infiltrated areas were evaluated by confocal laser scanning microscope. The positive control and the 37% $H_3PO_4$ brush group failed to show significant differences in the removed thickness (p > 0.05); however, the mean percentage of the infiltrated area was higher in the 37% $H_3PO_4$ brush group ($84.13{\pm}7.58%$%) than the positive control ($63.51{\pm}7.62%$, p < 0.001). Scanning electron microscope observations indicate higher pore volumes for the 37% $H_3PO_4$ brush group than for the positive control. Conclusions: Application of 37% $H_3PO_4$ with a brush for 30 seconds increased the pore volume of WSL surface layers and the percentage of infiltrated areas in comparison to the use of 15% HCl for 120 seconds.

THE SHEAR BOND STRENGTHS OF COMPOSITE RESINS TO GLASS IONOMER CEMENTS BY SURFACE TREATMENT AND ELAPSED TIME (광중합 GIC충전후 경과시간 및 표면처리에 따른 복합레진과의 결합강도에 관한 연구)

  • Chung, Hye-In;Kim, Shin;Chung, Tae-Sung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.1
    • /
    • pp.82-94
    • /
    • 1997
  • For the purpose of establishing the most appropriate method of bonding between glass ionomer liners and composite resin and comparing the materials for sandwich technique, an experiment was performed to measure the shear bond strengths between the two with the variables in the surface treatment of liners and elapsed time till composite buildup. Materials used were Vitrebond and Fuji II LC, each as the restorative and liner respectively, and each group was subdivided by surface treatment (acid etching and sandblasting) and time elapsed from GIC filling to composite buildup (immediately, 1 day, 7 days), consisting 12 groups as a whole. Each subgroup was composed of 10 specimens and the shear bond strength between GIC liners and composite resin was measured under UTM and analyzed. The result were as follows: 1. The shear bond strength between two materials was highest when initially filled Fuji II LC was sandblasted after 1 days and composite built-up (Group FS1). And the lowest value was found when GIC was acid-etched after 7 days and composite built-up (Group FE7). Significant difference was found between the two groups. (P<0.01) 2. In regard of surface treatment of GI liners, acid-etched group (VE) showed higher bond strength than sandblasted group (VS) for Vitrebond. But, the reverse was true for Fuji II LC. (P<0.05) 3. In regard to the time elapsed from GI filling to composite buildup, the group of 1 day elapse showed relatively higher strength for Vitrebond. On the contrary, immediate buildup group (FE0) was stronger for acid-etched group and 1 day elapse group(FS1) was higher for sand-blasted group in Fuji II LC. (P<0.05)

  • PDF

A Study of Selective Absorption of Metal Ions by Chelating Agent-Loaded Anion Exchange Resins (킬레이트 시약으로 처리한 음이온 교환수지에 의한 금속이온의 선택적 흡착에 관한 연구)

  • Lee Dai Woon;Lee, Won;Yu Euy Kyung
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.141-151
    • /
    • 1979
  • The selective absorption of metal ions by chelating agent-loaded resins was studied in aqueous media. The resins were prepared by loading the conventional anion exchange resin, Dowex 1-X8 (50 to 100 mesh) with chelating agents containing sulfonic group, such as 8-hydroxy-quinoline-5-sulfonic acid (HQS) and 7-nitroso-8-hydroxyquinoline-5-sulfonic acid (NHQS). The stability of the resin was markedly influenced by the following factors; (1) the affinity and concentration of anions in the external solution, (2) the pH of the media. The optimum conditions for the absorption of metal ions were determined with respect to the pH, shaking time, and the effect of anion concentration in the medium. Under the optimum condition the order of the absorption of metal ions such as Fe(Ⅲ), Cu(Ⅱ), Pb(Ⅱ), and Zn(Ⅱ) was in accord with that of the stability constants of the chelates. The total capacities of the resins were found in the range of 0.6∼1.6 mmole metal per gram.

  • PDF