DOI QR코드

DOI QR Code

Investigation of Compressive Strength and Foaming Characteristics of Acid Anhydride Epoxy Foam by Foaming Agent

발포제에 따른 산무수물계 에폭시 폼의 압축강도 및 포밍특성 분석

  • Kwon, Dong-Jun (Polymer Resin Team, Hybrid New Material Division, Korea Dyeing and Finishing Technology Institute) ;
  • Kim, Jong-Hyun (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Park, Sung-Min (Polymer Resin Team, Hybrid New Material Division, Korea Dyeing and Finishing Technology Institute) ;
  • Kwon, Il-Jun (Polymer Resin Team, Hybrid New Material Division, Korea Dyeing and Finishing Technology Institute) ;
  • Park, Joung-Man (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Gyeongsang National University)
  • Received : 2018.07.16
  • Accepted : 2018.08.14
  • Published : 2018.08.31

Abstract

Polymer foams were used to fill the void in the structure in addition to flame retardant and heat insulation. Polymer foams such as polyurethane, polyisocyanurate, poly(vinyl chloride), polyethylene terephthalate were used to weight lighting materials. In this study, epoxy foam was used to improve mechanical properties of polymer foam. Acid anhydride type hardener reacts with polyol. Using this phenomenon, if blowing agent was added into epoxy resin using acid anhydride type hardener, formation and compressive properties of epoxy foam was studied. Formation of polymer foam was compared with type of blowing agent and concentration of blowing agent via compressive test. As these results, optimized condition of epoxy foam was found and epoxy foam had better compressive property than other polymer foam.

구조용 폼의 용도는 난연, 단열 기능이외에 구조적인 목적으로 공극부위를 충진시키는 용도로 사용되고 있다. 경량 소재 개발을 위해 CFRP와 구조용 폼이 이용되고 있으며, PUR, PIR, PVC, PET와 같은 대표적인 폼이 존재한다. 본 연구에서는 구조용 폼의 특성 중 강도 강화를 위한 목적으로 에폭시 폼을 개발하고자 하였다. 에폭시 조성 중 산무수물계 경화제는 기존의 폴리올과 반응을 하기 때문에 산무수물계 에폭시 수지에 발포제를 이용할 경우 폼이 형성되는지, 형성된다면, 압축특성과 포밍 형태를 관하는 연구를 진행하였다. 에폭시 폼을 형성시키기 위한 발포제의 종류에 따른 영향 및 발포재의 농도에 따라 변화되는 폼밍의 결과 차이를 분석하였으며, 산무수물계 수지의 조성차이에 따른 폼의 압축강도를 평가하였다. 궁극적으로 에폭시 폼을 최적의 발포제 선정으로 구조적 강도가 높은 폼을 형성시킬 수 있음을 확인하였으며, 기존의 구조용 폼 소재에 비해 높은 압축강도 및 비압축 강도를 가짐을 확인하였다.

Keywords

References

  1. Choi, W.H., Shin, J.H., Song, T.H., Lee, W.J., and Kim, C.G., "Design and Fabrication of Stratified Microwave Absorbing Structure Consisted of Glass/epoxy-resistive Sheet-foam", Composites Research, Vol. 27, 2014, pp. 225-230. https://doi.org/10.7234/composres.2014.27.6.225
  2. Kim, Y.S., and Chang, S.H., "A Study on the Micro-deformation of Plain Weave Carbon/epoxy Composite-polymer Foam Sandwich Structures during Curing", Composites Research, Vol. 17, 2004, pp. 28-36.
  3. Gianchandani, P.K., Casalegno, V., Salvo, M., Bianchi, G., Ortona, A., and Ferraris, M., "SiC Foam Sandwich Structures Obtained by Mo-wrap Joining", Materials Letters, Vol. 221, 2018, pp. 240-243. https://doi.org/10.1016/j.matlet.2018.03.105
  4. Xie, Y., Li, J., Lu, Z., Jiang, J., and Niu, Y., "Effects of Bentonite Slurry on Air-void Structure and Properties of Foamed Concrete", Construction and Building Materials, Vol. 179, 2018, pp. 207-219. https://doi.org/10.1016/j.conbuildmat.2018.05.226
  5. Prociak, A., Kuranska, M., Cabulis, U., Ryszkowska, J., Leszczynska, M., Uram, K., and Kirpluks, M., "Effect of Biopolyols with Different Chemical Structures on Foaming of Polyurethane Systems and Foam Properties", Industrial Crops & Products, Vol. 120, 2018, pp. 262-270. https://doi.org/10.1016/j.indcrop.2018.04.046
  6. Mostafa, A., Shankar, K., and Morozov, E.V., "Effect of Shear Keys Diameter on the Shear Performance of Composite Sandwich Panel with PVC and PU Foam Core: FE Study", Composite Structures, Vol. 102, 2013, pp. 90-100. https://doi.org/10.1016/j.compstruct.2013.03.003
  7. Bedell, M., Brown, M., Kiziltas ,A., Mielewski, D., Mukerjee, S., and Tabor, R., "A Case for Closed-loop Recycling of Post-consumer PET for Automotive Foams", Wast Management, Vol. 71, 2018, pp. 97-108. https://doi.org/10.1016/j.wasman.2017.10.021
  8. Aliha, M.R.M., Linul, E., Bahmani, A., and Marsavina, L., "Experimental and Theoretical Fracture Toughness Investigation of PUR Foams under Mixed Mode I+III Loading", Polymer Testing, Vol. 67, 2018, pp. 75-83. https://doi.org/10.1016/j.polymertesting.2018.02.015
  9. Wang, Y.C., and Foster, A., "Experimental and Numerical Study of Temperature Developments in PIR Core Sandwich Panels with Joint", Fire Safety Journal, Vol. 90, 2017, pp. 1-14. https://doi.org/10.1016/j.firesaf.2017.03.003
  10. Hu, Y., Fang, Q.Z., Sha, B.L., and Zhao, M., "Effect of the Large Cells on the Fatigue Properties of Closed-cell Aluminum Alloy Foam", Composite Structures, Vol. 200, 2018, pp. 59-68. https://doi.org/10.1016/j.compstruct.2018.05.087
  11. Duarte, I., Vesenjak, M., Krstulovic-Opara, L., and Ren, Z., "Crush Performance of Multifunctional Hybrid Foams Based on an Aluminium Alloy Open-cell Foam Skeleton", Polymer Testing, Vol. 67, 2018, pp. 246-256. https://doi.org/10.1016/j.polymertesting.2018.03.009
  12. Shunmugasamy, V.C., and Mansoor, B., "Aluminum Foam Sandwich with Density-graded Open-cell Core: Compressive and Flexural Response", Materials Science & Engineering A, Vol. 731, 2018, pp. 220-230. https://doi.org/10.1016/j.msea.2018.06.048
  13. Hu, D., Gu, Y., Liu, T., and Zhao, L., "Microcellular Foaming of Polysulfones in Supercritical $CO_2$ and the Effect of Co-blowing Agent", Journal of Supercritical Fluids, Vol. 18, 2018, pp. 30134-30137.
  14. Nistor, A., Topiar, M., Sovova, H., and Kosek, J., "Effect of Organic Co-blowing Agents on the Morphology of $CO_2$ Blown Microcellular Polystyrene Foams", Journal of Supercritical Fluids, Vol. 17, 2017, pp. 30294-30302.
  15. Long, Y., Yuan, S., Wang, Y., and Xie, X., "Polyurethane Foaming with Engineered $CO_2$-releasing Nanoparticles: From the Thickening Effect to the Industrial Applications of the Blowing Agents", Polymer, Vol. 143, 2018, pp. 69-78. https://doi.org/10.1016/j.polymer.2018.04.009
  16. Wu, H., Zhao, G., Wang, G., Zhang, W., and Li, Y., "A New Core-back Foam Injection Molding Method with Chemical Blowing Agents", Materials and Design, Vol. 144, 2018, pp. 331-342. https://doi.org/10.1016/j.matdes.2018.02.043
  17. Long, Y., Zheng, L., Gu, Y., Lin, H., and Xie, X., "Carbon Dioxide Adduct from Polypropylene Glycol Grafted Polyethyleneimine as a Climate-friendly Blowing Agent for Polyurethane Foams", Polymer, Vol. 55, 2014, pp. 6494-6503. https://doi.org/10.1016/j.polymer.2014.10.039
  18. Mohamed Aqhil Ahmed, M.A., and Safiulla, M., "Evaluation of Apparent Shear Modulus of Multilayer PUF Cored Sandwich Beams Using Novel Experimental Technique", Materials Today: Proceedings, Vol. 5, 2018, pp. 429-435. https://doi.org/10.1016/j.matpr.2017.11.102
  19. Birman, V., "Wrinkling of Functionally Graded Sandwich Structures Subject to Biaxial and In-plane Shear Loads", Journal of Applied Mechanics, Vol. 84, 2017, JAM-17-1320.
  20. Stefani, P.M., Perez, C.J., Alvarez, V.A., and Vazquez, A., "Microcellulose Fibers-filled Epoxy Foams", Journal of Applied Polymer Science, Vol. 109, 2008, pp. 1009-1013. https://doi.org/10.1002/app.28162
  21. Zhong, F., He, J., and Wang, X., "Microstructure and Properties of Epoxy Foams Prepared by Microwave", Journal of Applied Polymer Science, Vol. 112, 2009, pp. 3543-3547. https://doi.org/10.1002/app.29757