• Title/Summary/Keyword: residual resistance ratio

Search Result 109, Processing Time 0.034 seconds

Evaluation on Spalling Properties of Ultra High Strength Concrete with Combined Fiber (복합섬유를 혼입한 초고강도 콘크리트의 폭렬 특성 평가)

  • Son, Myung-Hak;Kim, Gyu-Yong;Min, Choong-Siek;Lee, Tae-Gyu;Koo, Kyung-Mo;Youn, Yong-Sang
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.209-210
    • /
    • 2011
  • This study is aimed to draw a optimum combined fiber mix condition to improve spalling resistance and flowability of ultra high-strength concrete. As a result, W/B 12.5% concrete specimens were prevented spalling with PE0.05+ PP0.1, PE0.05+NY0.1 and W/B 12.5% concrete specimens were prevented spalling with all of combined organic fiber mix condition. But There is no significant influence of steel fiber under 5% volume ratios to prevent spalling. In the scope of this study, we suggest that condition of optimum volume ratio PE0.05+NY0.1 is to improve spalling resistance, flowability and residual compressive strength.

  • PDF

Spalling Properties of High Performance Concrete Designed with the Various Types of Coarse Aggregate (굵은골재 종류 변화에 따른 고성능 콘크리트의 폭렬특성)

  • Heo, Young-Sun;Park, Yong-Kyu;Jin, Hu-Lin;Jee, Suk-Won;Yang, Seong-Hwan;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.95-98
    • /
    • 2006
  • This study investigates spalling properties of high performance concrete, 60MPa clan, made with the various types of coarse aggregate and adding ratio of polypropylene(PP) fiber. As experimental parameters, totally sixteen specimens of ${\phi}100{\times}200mm$ in size are prepared: one specimen for control without fiber, ten specimens with different coarse aggregate types, along with 0.05, 0.1, 0.15 percent of PP fiber in each. 1 hour fire test is conducted and then spalling appearance, spalling degree and residual compressive strength are examined. In addition, sit specimens made with two types of coarse aggregate site, along with same adding ratio of fiber are supplementally done, and only spalling properties is examined. Test results showed that control concrete and most specimens containing 0.05% of PP fiber exhibited 4 to 3 level of spalling degree, resulting severe explosive spalling, except for the specimen using basalt aggregate(Bc) showing 2 to 3 level of that. Especially, the Bc specimen containing 0.1% of the fiber exhibited that residual compressive strength value was 32%, which is 10% higher than other specimens using limestone or granite. Spalling resistance performance was also effective as aggregate size increase.

  • PDF

Application of self-centering wall panel with replaceable energy dissipation devices in steel frames

  • Chao, Sisi;Wu, Hanheng;Zhou, Tianhua;Guo, Tao;Wang, Chenglong
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.265-279
    • /
    • 2019
  • The self-centering capacity and energy dissipation performance have been recognized critically for increasing the seismic performance of structures. This paper presents an innovative steel moment frame with self-centering steel reinforced concrete (SRC) wall panel incorporating replaceable energy dissipation devices (SF-SCWD). The self-centering mechanism and energy dissipation mechanism of the structure were validated by cyclic tests. The earthquake resilience of wall panel has the ability to limit structural damage and residual drift, while the energy dissipation devices located at wall toes are used to dissipate energy and reduce the seismic response. The oriented post-tensioned strands provide additional overturning force resistance and help to reduce residual drift. The main parameters were studied by numerical analysis to understand the complex structural behavior of this new system, such as initial stress of post-tensioning strands, yield strength of damper plates and height-width ratio of the wall panel. The static push-over analysis was conducted to investigate the failure process of the SF-SCWD. Moreover, nonlinear time history analysis of the 6-story frame was carried out, which confirmed the availability of the proposed structures in permanent drift mitigation.

The Effect of Fatigue Fracture in shot peening Marine structural steel at stress ratio (쇼트피닝 가공된 해양구조용강의 피로파괴에 미치는 응력비의 영향)

  • Park, Kyoung-Dong;Han, Kun-Mo;Jin, Young-Beom
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.138-144
    • /
    • 2003
  • Rencentely, the request for the light weight is more incresed in the area of industrial environment and machinery and consistent effort is needed to accomplish high strength of material for the direction of light weight. we got the following characteristic from crack growth test carried out in the range of stress ration of 0.1, 0.3 and 0.6 by means of opening mode displacement. At the content stress ratio, the threshold stress intensity factor crack range ${\Delta}K_{th}$in the early stage of fatigue crack growth (Region I) and dtress intensity factor range ${\Delta}K$ in the stable of fatigue crack growth (Region II) with an increase in ${\Delta}K$. Fatigue life shows more improvement in the Shot-peened material than in the Un-peening material. And compressive residual stress of surface on the Shot peening processed operate resistance force of fatigue. So we can obtain fallowings. (1) The fatigue crack growth rate on stage II is conspicuous with the size of compressive residual stress and is depend on Paris equation. (2) Although the maxium compressive residual stress is deeply and widely formed from surface, fatigue life does not improve than when maxium compressive residual stress is formed in surface. (3) The threshold stress intensity factor range is increased with increasing compressive residual stress.

  • PDF

Service Life Estimation of ACQ-treated Wood Based on Biodeterioration Resistance

  • Pang, Sung-Jun;Hong, Jung-Pyo;Lee, Jun-Jae;Oh, Jung-Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.641-651
    • /
    • 2015
  • The aim of this study was to estimate the service life of alkaline copper quaternary (ACQ)-treated wood. The service life of preservative-treated wood was estimated by comparing a residual quantity of ACQ in wood with toxic threshold to fungi. Indoor and outdoor leaching tests were carried out in order to predict residual ACQ quantity within wood. As a result, the leaching ratio of ACQ from treated wood above ground via precipitation was 18.1% for 50 years. When the H4 treated wood, which is traditionally used in contact with the ground and fresh water, is used above-ground, the leaching ratio of ACQ for 50 years is 18.1% and the residual quantity of ACQ is $4.2kg/m^3$, which is higher than the toxic threshold of ACQ. Thus, the H4 treated wood used above-ground will be resistant to biodeterioration for at least 50 years.

Bond-slip behaviour of H-shaped steel embedded in UHPFRC

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Chen, Chufa;Li, Yongjie;Lin, Zhiwei;Liao, Wen-I
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.563-582
    • /
    • 2021
  • The present study experimentally and analytically investigated the push-out behaviour of H-shaped steel section embedded in ultrahigh-performance fibre-reinforced concrete (UHPFRC). The effect of significant parameters such as the concrete types, fibre content, embedded steel length, transverse reinforcement ratio and concrete cover on the bond stress, development of bond stress along the embedded length and failure mechanism has been reported. The test results show that the bond slip behaviour of steel-UHPFRC is different from the bond slip behaviour of steel-normal concrete and steel-high strength concrete. The bond-slip curves of steel-normal concrete and steel-high strength concrete exhibit brittle behaviour, and the bond strength decreases rapidly after reaching the peak load, with a residual bond strength of approximately one-half of the peak bond strength. The bond-slip curves of steel-UHPFRC show an obvious ductility, which exhibits a unique displacement pseudoplastic effect. The residual bond strength can still reach from 80% to 90% of the peak bond strength. Compared to steel-normal concrete, the transverse confinement of stirrups has a limited effect on the bond strength in the steel-UHPFRC substrate, but a higher stirrup ratio can improve cracking resistance. The experimental campaign quantifies the local bond stress development and finds that the strain distribution in steel follows an exponential rule along the steel embedded length. Based on the theory of mean bond and local bond stress, the present study proposes empirical approaches to predict the ultimate and residual bond resistance with satisfactory precision. The research findings serve to explain the interface bond mechanism between UHPFRC and steel, which is significant for the design of steel-UHPFRC composite structures and verify the feasibility of eliminating longitudinal rebars and stirrups by using UHPFRC in composite columns.

Study on Characteristics of Leakage Current and Insulation Resistance for a Circuit According to Load Types (부하종류에 따른 회로의 누설전류 및 절연저항 특성 연구)

  • Han, Kyung-Chul;Choi, Yong-Sung
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.364-369
    • /
    • 2019
  • The ratios of compliant branch circuit of leakage current and insulation resistance were 68.4% and 90.8%, respectively at the lamp load, 64.6% and 96.5% at the heat load, 86.7% and 88.9% at the power load. Limit of residual current of the zero phase secondary current value at the zero phase primary current was 100 A when rated primary current 400 A more than. The reason why the ratio of branch circuit of the leakage current was less than the ratio of compliant branch circuit of the insulation resistance might be that the leakage current includes the capacitive leakage current and the zero phase current.

A Study on the Characteristics of the interface in Tube / Tubesheet of the Nuclear Steam Generator by Explosive Bonding (폭발접합된 원자력 증기발생기 튜브/튜브시트 계면 특성에 관한 연구)

  • 이병일;공창식;심상한;강정윤;이상래
    • Explosives and Blasting
    • /
    • v.17 no.4
    • /
    • pp.32-50
    • /
    • 1999
  • This study deals with interface charactristics of tube and tubesheet of the nuclear steam generator by the explosive expansion in order to take advantage of optimum expansion ratio, pull-out strength and leakage tightness and improvement of the resisitance on the stress corrosion cracking for low residual stress. The paper also show the relationship between roll, hydraulic and explosive expansion. The results obtain are as follows (1) Because of the explosive bonding is to use the high speed pressure and energy by the explosive, workability is good, bonding region is homogenous (2) Expansion ratio is 2.7%, Pull-out strength 850kg, Leakage strength $500kg/cm^2$. Clearance gap is 10~30mm in case of explosive expansion and interface structure of the tube and tubesheet is optimum condition. (3) As the transition region of the explosive expansion is inactive, the resistance of the stress corrosion cracking is increases 30~40% compare to the roll and hydraulic expansion.

  • PDF

Thermomechanical and electrical resistance characteristics of superfine NiTi shape memory alloy wires

  • Qian, Hui;Yang, Boheng;Ren, Yonglin;Wang, Rende
    • Smart Structures and Systems
    • /
    • v.30 no.2
    • /
    • pp.183-193
    • /
    • 2022
  • Structural health monitoring and structural vibration control are multidisciplinary and frontier research directions of civil engineering. As intelligent materials that integrate sensing and actuation capabilities, shape memory alloys (SMAs) exhibit multiple excellent characteristics, such as shape memory effect, superelasticity, corrosion resistance, fatigue resistance, and high energy density. Moreover, SMAs possess excellent resistance sensing properties and large deformation ability. Superfine NiTi SMA wires have potential applications in structural health monitoring and micro-drive system. In this study, the mechanical properties and electrical resistance sensing characteristics of superfine NiTi SMA wires were experimentally investigated. The mechanical parameters such as residual strain, hysteretic energy, secant stiffness, and equivalent damping ratio were analyzed at different training strain amplitudes and numbers of loading-unloading cycles. The results demonstrate that the detwinning process shortened with increasing training amplitude, while austenitic mechanical properties were not affected. In addition, superfine SMA wires showed good strain-resistance linear correlation, and the loading rate had little effect on their mechanical properties and electrical resistance sensing characteristics. This study aims to provide an experimental basis for the application of superfine SMA wires in engineering.

An Experimental Study on the Curing Method and PP Fiber Mixing Ratio on Spalling Resistance of High Strength Concrete (양생요인 및 PP 섬유 혼입율 변화에 따른 고강도 콘크리트의 폭렬특성)

  • Han, Cheon-Goo;Kim, Won-Ki
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.6
    • /
    • pp.113-119
    • /
    • 2009
  • This study is to investigate the fundamental and fireproof qualities of high strength concrete corresponding to changes in the curing factors and the PP fiber ratio. The results were as follows. For the fundamental characteristics of concrete, the fluidity was reduced in proportion to the increase in the PP fiber ratio. The compressive strength was somewhat reduced according to an increase in the PP fiber ratio. However, it had the high strength scope of more than 60 MPa at 7 days and of more than 90 MPa at 28 days. On the spalling mechanism followed by changes of the water content ratio, spalling was prevented in all combinations, except the specimen without PP fiber and subjected to 3.0% of moisture contents. When spalling was prevented at that time, the residual compressive strength ratio was 22%~41% and the mass reduction ratio was 5%~7%, which was relatively favorable. As the spalling mechanism corresponds to changes in the curing method, spalling was prevented in concrete with a PP fiber mixing ratio of more than 0.05% in the event of standard curing, and in concrete with a PP fiber mixing ratio of more than 0.10% in the case of steam curing and autoclave curing. In these cases, when spalling was prevented, the residual compressive strength ratio was 23~42% and the mass reduction ratio was 7~11%. In these results, the ease of spalling prevention in high strength concrete was inversely proportional to the water content ratio. Depending on the curing method, spalling was prevented in concrete with over 0.05% PP fiber with standard curing and in concrete with over 0.1% PP fiber with steam curing and autoclave curing.