• Title/Summary/Keyword: residual condition

Search Result 898, Processing Time 0.024 seconds

The Variation of the Residual Chlorine Concentration in a Distribution Reservoir (유출량 변동에 따른 모형배수지내 잔류염소농도의 변화)

  • Lee, Sang-Jun;Hyeon, In-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.6
    • /
    • pp.725-733
    • /
    • 2001
  • In this study, variation of effluent of residual chlorine concentration was estimated from bench scale distribution reservoir test according to variation of flow and baffle condition. According to the bench scale test results, when the flow rate was an unsteady state, difference between the case of no-baffle in the reservoir and the case of two-baffles in the reservoir became less than the condition when the effluent flow was in a steady state. Consequently, the results are caused by the flow rate variation. Thus, the baffle is less effective than a clearwell of steady state condition.

  • PDF

Condition assessment of raking damaged bulk carriers under vertical bending moments

  • Kim, Do Kyun;Yub, Su Young;Choi, Han Suk
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.629-644
    • /
    • 2013
  • This paper concerns about the raking damages on the ultimate residual hull girder strength of bulk carriers by applying the modified R-D diagram (advanced method). The limited raking damage scenarios, based on the IMO's probability density function of grounding accidents, were carried out by using sampling technique. Recently, innovative method for the evaluation of the structural condition assessment, which covers the residual strength and damage index diagram (R-D diagram), was proposed by Paik et al. (2012). This concept is applied in the present study and modified R-D diagram, which can be considered vessel size effect, is then proposed. Four different types of bulk carrier structures, i.e., Handysize (37K), Supramax (57K), Kamsarmax (82K) and Capesize (181K) by Common Structural Rule (CSR), were applied to draw the general tendency. The ALPS/HULL, intelligent supersize finite element method, was employed for the ultimate longitudinal strength analysis. The obtained empirical formulas will be useful for the condition assessment of bulk carrier structures. It can also cover different sizes of the bulk carriers in terms of ultimate longitudinal strength. Important insights and findings with useful guidelines developed in this study are summarized.

Role of residual ferrites on crevice SCC of austenitic stainless steels in PWR water with high-dissolved oxygen

  • Sinjlawi, Abdullah;Chen, Junjie;Kim, Ho-Sub;Lee, Hyeon Bae;Jang, Changheui;Lee, Sanghoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2552-2564
    • /
    • 2020
  • The crevice stress corrosion cracking (SCC) susceptibility of austenitic stainless steels was evaluated in simulated pressurized water reactor (PWR) environments. To simulate the abnormal condition in temporary clamping devices on leaking small bore pipes, crevice bent beam (CBB) tests were performed in the oxygenated as well as hydrogenated conditions. No SCC cracks were found for SS316 in both conditions. SS304 also showed good resistance in the hydrogenated condition. However, all SS304 specimens showed SCC cracks in the oxygenated condition, indicating poor crevice SCC resistance. It was found that residual ferrites were selectively dissolved because of the galvanic corrosion coupled with the neigh-bouring austenite phase, resulting in SCC initiation in SS304. Crack morphologies were mostly transgranular assisted by the damaged δ-ferrite and deformation-induced slip bands.

THEORETICAL FLOW ANALYSIS AND EXPERIMENTAL STUDY ON TIME RESOLVED THC FORMATION WITH RESIDUAL GAS IN A DUAL CVVT ENGINE

  • Myung, C.L.;Kwak, H.;Hwang, I.G.;Park, S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.697-704
    • /
    • 2007
  • Recently, a variable valve timing system has been widely adopted in internal combustion engine in order to improve the fuel economy and torque at low engine speed. In addition, it is known that varying valve timing according to the various engine operations could reduce exhaust gas, especially NOx, because of residual gas by valve overlap. In this study, to improve the low exhaust gas and fuel economy at part load condition, the residual gas and back flow of exhaust gas due to valve overlap were calculated computationally. Moreover, the characteristics of engine performances and NOx formations were investigated with the experiment of combination of intake and exhaust valve timing condition. Under these various valve operating conditions, the effects of both the positive valve overlap and negative valve overlap(valve underlap) were examined simultaneously. Finally, the characteristics of cyclic THC emission were analyzed by using Fast Response FID(FR-FID) in the cylinder, intake port and exhaust port positions. Besides, the effect of the different gradients of the valve timing change on engine performance was investigated and an optimum control strategy was suggested.

Parametric Study on the Pressure Continuity Residual for the Stabilization of Pressure in Incompressible Materials (비압축성 물체의 압력해 안정화를 위한 압력연속여분치의 매개변수 연구)

  • 이상호;김상효
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.189-198
    • /
    • 1995
  • The conventional finite element formulations for incompressible materials show pressure oscillations or pressure modes in four-node quadrilateral elements of commonly used displacement and pressure interpolations. The criterion for the stability in the pressure solution is the so-called Babugka-Brezzi stability condition, and the above elements do not satisfy this condition. In this study, a pressure continuity residual based on the pressure discontinuity at element interfaces is used to study the stabilization of pressure solutions in bilinear displacement-constant pressure four-node quadrilateral elements. This pressure residual is implemented in Q1P0 element derived from the conventional incompressible elasticity. The pressure solutions can be stable with the pressure residual though they exhibit sensitivity to the stabilization parameters. Parametric study for the solution stabilization is also discussed.

  • PDF

Residual Stress and Displacement Analysis of Thick Plate for Partial Penetration Multi-Pass Weldment (후판의 부분용입 다층용접에 대한 잔류음력 및 변형해석)

  • Kim, Seok;Bae, Sung-In;Song, Jung-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1813-1819
    • /
    • 2001
  • Partial penetration welding Joint defines that groove welds without steel backing, welded from on side, and groove weeds welded from both sides but without back gouging, that is. it has an unwelded portion at the root of the weld. In this study we analysed fur residual stress and displacement distribution on partial penetration welding condition of thick plate metal. For 25.4mm thick plate, theoretical residual stress and displacement analysis by finite element method using ABAQUS was carried out and compared with the experimental result using hole-drilling method. In results of the condition of partial penetration, it appeared that longitudinal stress at welding area was a little difference and transverse stress did not have any effect by partial penetration multi-pass welding. From a point of welding distortion in partial penetration multi-pass welding, it seemed to be better to control root face smaller than 6.35mm.

A Study on the Thermal and Mechanical Characteristic of Hybrid Welded Ship Structure A-grade Steel (선체구조용 A급 강재의 하이브리드 용접에 대한 열 및 역학적 특성에 관한 연구)

  • Oh, Chong-In;Kim, Young-Pyo;Park, Ho-Kyung;Bang, Han-Sur
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.64-68
    • /
    • 2007
  • Recently, there has been considerable research in the field of application of Laser-Arc hybrid welding for superstructures, such as ship-structures, transport vehicles etc. However, the study on heat distribution and welding residual stress of hybrid weld by numerical simulation leaves much to be desired. Therefore, in this study, an optimized welding condition and numerical simulation for hybrid welding, using previous numerical analysis to calculate the heat source for hybrid welding, has been analyzed. For this purpose, fundamental welding phenomena of the hybrid process, using Laser and, is investigated. In order to calculate temperature and residual stress distribution in hybrid welds, a finite element heat source model is developed on the basis of experimental results and characteristics of temperature. Residual stress distribution in hybrid welds are understood from the result of simulation, and compared with the experimental values.

Residual stress formation in injection-molded samples under constrained quenching (가압 급냉하에서의 사출 성형품내의 잔류 응력 형성 해석)

  • Yoon, Kyunghwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.58-68
    • /
    • 1997
  • The residual stresses in injection-molded plastic parts can be divided into two, i.e., the flow-induced residual stress produced in flowing stage and the thermally-induced residual stress produced in cooling stage. Especially, the main source for the defect in the final parts, such as warpage, is known to be the thermally-induced stresses. For the freely quenched samples the structures of residual stresses and bire-fringence have been investigated by many researchers extensively. However, the boundary condition for free quenching was found to be improper to study actual injection molding process. In the present study a datailed structure of the residual stresses and birefringence produced under constrained quenching has been investigated experimentally. In constrained quenched samples a similar pattern but much less stress values than that for the freely quenched samples has been found in the case of the thickness of 1.0 mm. Howvere, in the case of the thickness of 4.0mm, totally different stress profile has been found experimentally. Suprisingly uniform birefringence throughout whole thickness has been found for all the cases of constrained quenching. Finally, to explain the mechanism to produce the final residual stresses and bire-fringence some preliminary numerical results including free volume theory have been introduced briefly.

  • PDF

Residual Stress Measurement by L$_{CR}$ Wave and Acoustic Emission Characteristics from Fatigue Crack Propagation in STS316L Weldment (STS316L용접재의 표면파에 의한 잔류응력 측정과 균열진전시의 음향방출특성)

  • 남기우;박소순;안석환
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.47-54
    • /
    • 2003
  • In this study, the residual stress and the acoustic emission Charactreistics from fatigue crack propagation were investigated, bused on the welded material of STS316L. The residual stress of welding locations could be evaluated by ultrasonic parameters, such as L$_{CR}$ wave velocity and L$_{CR}$ wave frequency; the residual stress between base metal and weld metal was evaluated. In the fatigue tests, three types of signals were observed, regardless of specimen condition, base metal, and weld metal. Based on NDE analysis of AE signals by the time-frequency analysis method, it should also be possible to evaluate, in real-time, the crack propagation and final fracture process, resulting from various damages and defects in welded structural members.

Path Design of Redundant Flexible Robot Manipulators to Reduce Residual Vibration in the Presence of Obstacles (충돌회피 및 잔류진동 감소를 위한 여유자유도 탄성 로봇 매니퓨레이터 경로설계)

  • Park, K.J.;Chung, K.
    • Journal of Power System Engineering
    • /
    • v.5 no.2
    • /
    • pp.79-86
    • /
    • 2001
  • A method is presented for generating the path which significantly reduces residual vibration of the redundant, flexible robot manipulator in the presence of obstacles. The desired path is optimally designed so that the system completes the required move with minimum residual vibration, avoiding obstacles. The dynamic model and optimal path are effectively formulated and computed by using special moving coordinate, called VLCS, to represent the link flexibility. The path to be designed is developed by a combined Fourier series and polynomial function to satisfy both the convergence and boundary condition matching problems. The concept of correlation coefficients is used to select the minimum number of design variables. A planar three-link manipualtor is used to evaluate this method. Results show that residual vibration can be drastically reduced by selecting an appropriate path, in the presence of obstacles.

  • PDF