• Title/Summary/Keyword: requirement model

Search Result 1,441, Processing Time 0.032 seconds

A Study on the Control System Design through Systems Engineering Approach (체계공학 접근방법을 통한 제어시스템 설계에 관한 연구)

  • 안장근
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.13-23
    • /
    • 2004
  • There are several kinds of error factors in control system design. All error factors must be analysed before designing the control system. Therefore, each error factor must be compensated and eliminated completely. Systems Engineering can solve these error factors. In this paper, systems engineering approach on control system design are studied under model based systems engineering with RDD-100, Matlab-Simulink. Systems Engineering shall be used in defense development from control system design to system development.

The effect of the revolution and forwarding speed of the rotary blade on the tilling power requirement (로우터리 경운(耕耘)날의 회전속도(回轉速度) 및 작업속도(作業速度)가 경운소요동력(耕耘所要動力)에 미치는 영향(影響))

  • Kwon, Soon Goo;Kim, Soung Rai
    • Korean Journal of Agricultural Science
    • /
    • v.11 no.1
    • /
    • pp.160-175
    • /
    • 1984
  • This study was carried out to analyze the effects of the revolution and forwarding speed of the rotary blade and the edge curves which were $30^{\circ}$ and $40^{\circ}$, on the power requirement of rotary tillage. In this study, the revolutions of the rotary blade considered were 204, 243, 285, 360 rpm, and the forwarding speeds of the rotary system considered were 29.40cm/sec, 46.93em/sec. The power requirements of rotary blade were measured by a dynamic strain gage systems at the soil bin which was filled with artificial soil. The results of the study were summarized as follows: 1. The response surface analysis showed that the revolution and forwarding speed of the rotary shaft had an interacting influence on the torque requirement of the rotary blade. The mathematical model developed by the above was repersented as follow. $$T=a_0+a_1V+a_2R +a_3VR+a_4VR^2$$ where, $a_0=constant$ $a_1,\;a_2,\;a_3,\;a_4=coefficients$ V=forwarding speed of the rotary system. (em/sec) R=revolution of the rotary shaft. (rpm) T=tilling torque requirement. (kg-m) 2. When the maximum tilling torque requirement was analyzed, ${\partial}T/{\partial}R$ was decreased with the increasing revolution of rotary shaft, while ${\partial}T/{\partial}V$ was increased, which was minimum at 200~220 rpm. When the forwarding speeds were increased, ${\partial}T/{\partial}R$ was decreased with increasing rate. 3. When the mean tilling torque requirement was analyzed, ${\partial}T/{\partial}V$ was constant at 320~360 rpm and ${\partial}T/{\partial}R$ was decreased with increasing rate along with the increasing revolution of rotary shaft. 4. When the mean tilling torgue requirement per unit volume of soil was analyzed, ${\partial}T/{\partial}V$ was minimum at 270~300 rpm. ${\partial}T/{\partial}R$ for the forwarding speeds of 29.40cm/sec and 46.93cm/sec was same as that for 280~290 rpm. 5. Increasing the edge curves of the rotary blades, the tilling torque requirement was increased. But other studies showed that the smaller the edge curve, the more straw could be wrapped on blades which resulted in increasing torque requirements. Therefore, the edge curve of rotary blade should be considered for the future study.

  • PDF

Drought Estimation Model Using a Evaporation Pan with 50 mm Depth (50mm 깊이 증발(蒸發) 팬을 이용한 한발 평가 모델 설정)

  • Oh, Yong Taeg;Oh, Dong Shig;Song, Kwan Cheol;Um, Ki Cheol;Shin, Jae Sung;Im, Jung Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.2
    • /
    • pp.92-106
    • /
    • 1996
  • Imaginary grass field was assumed suitable as the representative one for simplified estimation of local drought, and a moisture balance booking model computing drought was developed with the limited numbers of its determining factors, such as crop coefficient of the field, reservoir capacity of the soil, and the beginning point of drought as defined by soil moisture status. The maximum effective rainfall was assumed to be the same as the available free space of soil reservoir capacity. The model is similar to a definite depth evaporation pan, which stores rainfall as much as the available free space on the water in it and consumes the water by evaporation. When the pan keeps water less than a certain defined level, it is droughty. The model simulates soil moisture deficit on the assumed grass field for the drought estimation. The model can assess the water requirement, drought intensity, and the index of yield decrement due to drought. The influencing intensity indices of the selected factors were 100, 21, and 16 respectively for crop coefficient, reservoir capacity, and drought beginning point, determined by the annual water requirements as influenced by them in the model. The optimum values of the selected factors for the model were respectively 58% for crop coefficient defined on the energy indicator scale of the small copper pan evaporation, 50 mm for reservoir capacity on the basis of the average of experimentally determined values for sandy loam, loam, clay loam, and clay soils, and 65% of the reservoir capacity for the beginning point of drought.

  • PDF

A Study on the Systems Engineering based Verification of a Systems Engineering Application Model for a LRT Project (경량전철사업 시스템엔지니어링 전산모델 검증에 관한 연구)

  • Han, Seok-Youn;Kim, Joo-Uk;Choi, Myung-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.425-433
    • /
    • 2016
  • The construction of a light rail transit (LRT) system is a large and complex infrastructure project involving hundreds of billions of won in construction costs for a single route, and it is very important to carry out such a project from a life-cycle perspective because of its long-term operation. Systems engineering is a means and methodology to successfully implement customers' needs, and it is useful in large projects such as light rail transit. An application model called Systems Engineering for Light Rail Transit (SELRT) was developed to support systems engineering activities in light rail transit projects. In order to utilize SELRT, it is necessary to ensure that system requirements are met. As such, in this paper, we present a verification procedure and architecture based on a systems engineering-based methodology, thereby identifying the system requirements and deriving the verification requirements to confirm the SELRT model for the proposed method. The results show that the traceability of the system requirements and verification requirements, the verification method for each requirement, and the demonstration results for computerized tools are mutually connected, and that the initial requirements are clearly implemented in the SELRT. The proposed method is valid for verifying the SELRT, which can also be utilized in a LRT project.

The Study on Application of Advanced Maintenance and RePairBudgeting Model for Domestic Military Facilities (국방시설에 적합한 선진 유지관리예산모델의 적용에 관한 연구)

  • Park Chan-Sik;Hong Sung-Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.3 no.4 s.12
    • /
    • pp.123-131
    • /
    • 2002
  • The M&R(Maintenance & Repair) budgeting system for domestic military facilities based incremental budgeting model has caused many problems due to the difference between M&R requirement and budget, so military facility become early deterioration. this study proposes the application method of foreign M&R budgeting model for domestic military facility to improve current M&R budgeting system. In order to investigate the current status and problem of M&R budgeting system, this study reviewed various literature related characteristics and types of the foreign M&R budgeting model. The interview was performed for domestic military facility official. The model would greatly improve the current M&R budgeting process for the domestic military facilities.

Design and Verification of Multimedia Synchronization Model using PetriNet (페트리 네트를 이용한 멀티미디어 동기화 모델의 설계 및 검증)

  • Oh, Myoung-Kwan;Lee, Keun-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.584-589
    • /
    • 2010
  • In this paper we suggest multimedia synchronization model that is based on the Petri-net and services desirable quality of service requirement. Proposed model applies variable buffer which can be allowed, and then it presents high quality of service and real time characteristics. In this paper we expend Petri-net and propose new multimedia synchronization specification model in PBMSM and apply two analysis method of Petri-net to prove our model suggested. We compared with other models and showed high QoS.

Models for Measurement of Efficiency of Free Flight Separation Assurance (자유비행 분리보증 효율성 측정모델 연구)

  • Lee, Dae-Yong;Young, Kang-Ja
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.977-985
    • /
    • 2011
  • Airborne separation assurance is a key requirement for Free Flight Airspace operations, This paper study the feasibility of airborne separation assurance for free flight Airspaces operations by evaluating the efficiency measurement models. Three qualitatively different methods are utilized; one based Ground and Air conflict probability model, other based Dynamic Density model. the other based Direct operating cost model. The evaluation is Direct Operating Cost model and Two metrics are utilized for the efficiency measurements; airborne separation assurance performed quite well in the Free Flight evaluation; (1) 2 scenario of the conflict situations are resolved; (2) The MD-80 flight peformed separation assurance and efficiency, Not only appling for geometric method algorithm is more efficiently than potential method, but also the most efficiently geometric combined method.

Serviceability assessment of subway induced vibration of a frame structure using FEM

  • Ling, Yuhong;Gu, Jingxin;Yang, T.Y.;Liu, Rui;Huang, Yeming
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.131-138
    • /
    • 2019
  • It is necessary to predict subway induced vibration if a new subway is to be built. To obtain the vibration response reliably, a three-dimensional (3D) FEM model, consisting of the tunnel, the soil, the subway load and the building above, is established in MIDAS GTS NX. For this study, it is a six-story frame structure built above line 3 of Guangzhou metro. The entire modeling process is described in detail, including the simplification of the carriage load and the determination of model parameters. Vibration measurements have been performed on the site of the building and the model is verified with the collected data. The predicted and measured vibration response are used together to assess vibration level due to the subway traffic in the building. The No.1 building can meet work and residence comfort requirement. This study demonstrates the applicability of the numerical train-tunnel-soil-structure model for the serviceability assessment of subway induced vibration and aims to provide practical references for engineering applications.

Comparison and optimization of deep learning-based radiosensitivity prediction models using gene expression profiling in National Cancer Institute-60 cancer cell line

  • Kim, Euidam;Chung, Yoonsun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3027-3033
    • /
    • 2022
  • Background: In this study, various types of deep-learning models for predicting in vitro radiosensitivity from gene-expression profiling were compared. Methods: The clonogenic surviving fractions at 2 Gy from previous publications and microarray gene-expression data from the National Cancer Institute-60 cell lines were used to measure the radiosensitivity. Seven different prediction models including three distinct multi-layered perceptrons (MLP), four different convolutional neural networks (CNN) were compared. Folded cross-validation was applied to train and evaluate model performance. The criteria for correct prediction were absolute error < 0.02 or relative error < 10%. The models were compared in terms of prediction accuracy, training time per epoch, training fluctuations, and required calculation resources. Results: The strength of MLP-based models was their fast initial convergence and short training time per epoch. They represented significantly different prediction accuracy depending on the model configuration. The CNN-based models showed relatively high prediction accuracy, low training fluctuations, and a relatively small increase in the memory requirement as the model deepens. Conclusion: Our findings suggest that a CNN-based model with moderate depth would be appropriate when the prediction accuracy is important, and a shallow MLP-based model can be recommended when either the training resources or time are limited.

A Study on the Conversion Condition of Shallow Water 3-layered Model into 2-layered Model with Correlation (상관관계를 이용한 천해 3층모델의 2층 모델로의 전환조건에 대한 연구)

  • Kim, Young-Sun;Kim, Sung-Boo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.92-101
    • /
    • 2008
  • To dissolve the multi-layered model problems, and to complement 2-layered model's simplicity, assumed fluid-fluid-solid 3-layered model. Generally it is known that if the sediment thickness is more than 10 wavelength, the half space's influence to the in-water acoustic field could be disregarded. By tracking the maximum correlation coefficient of calculated results and experimental ones we confirmed that the requirement could be more realized. To calculate the maximum correlation coefficient we used single sensor transmission loss. On the assumption that the sediment sound velocity was 1813 m/s and frequency range 50 kHz to 120 kHz, the conversion condition was from 2.5 to 7.7 wavelength.