• Title/Summary/Keyword: repressor gene

Search Result 90, Processing Time 0.024 seconds

Alternative splicing variant of NRP/B promotes tumorigenesis of gastric cancer

  • Kim, Aram;Mok, Bo Ram;Hahn, Soojung;Yoo, Jongman;Kim, Dong Hyun;Kim, Tae-Aug
    • BMB Reports
    • /
    • v.55 no.7
    • /
    • pp.348-353
    • /
    • 2022
  • Gastrointestinal cancer is associated with a high mortality rate. Here, we report that the splice variant of NRP/B contributes to tumorigenic activity in highly malignant gastric cancer through dissociation from the tumor repressor, HDAC5. NRP/B mRNA expression is significantly higher in the human gastric cancer tissues than in the normal tissues. Further, high levels of both the NRP/B splice variant and Lgr5, but not the full-length protein, are found in highly tumorigenic gastric tumor cells, but not in non-tumorigenic cells. The loss of NRP/B markedly inhibits cell migration and invasion, which reduces tumor formation in vivo. Importantly, the inhibition of alternative splicing increases the levels of NRP/B-1 mRNA and protein in AGS cells. The ectopic expression of full-length NRP/B exhibits tumor-suppressive activity, whereas NRP/B-2 induces the noninvasive human gastric cancer cells tumorigenesis. The splice variant NRP/B-2 which loses the capacity to interact with tumor repressors promoted oncogenic activity, suggesting that the BTB/POZ domain in the N-terminus has a crucial role in the suppression of gastric cancer. Therefore, the regulation of alternative splicing of the NRP/B gene is a potential novel target for the treatment of gastrointestinal cancer.

Effect of SeaR gene on virginiamycins production in Streptomyces virginiae (희소방선균 SeaR 유전자가 Streptomyces virginiae의 virginiamycins 생산에 미치는 영향)

  • Ryu, Jae-Ki;Kim, Hyun-Kyung;Kim, Byung-Won;Kim, Dong-Chan;Lee, Hyeong-Seon
    • Korean Journal of Microbiology
    • /
    • v.51 no.3
    • /
    • pp.256-262
    • /
    • 2015
  • In order to study the effect of the receptor protein (SeaR), which is isolated from Saccharopolyspora erythraea, we introduced the SeaR gene to Streptomyces virginiae as host strains. An effective transformation procedure for S. virginiae was established based on transconjugation by Escherichia coli ET12567/pUZ8002 with a ${\varphi}C31$-derived integration vector, pSET152, which contained int, oriT, attP, and $ermEp^{\ast}$ (erythromycin promotor). Therefore, the pEV615 was introduced into S. virginiae by conjugation and integrated at the attB locus in the chromosome of the recipients by the ${\varphi}C31$ integrase (int) function. Transformants of S. virginiae containing the SeaR gene were confirmed by PCR and transcriptional expression of the SeaR gene in the transformants was analyzed by RT-PCR, respectively. And, we examined the production time of virginiamycins in the culture media of both the transformants and the wild type. The production time of virginiamycins in the wild type and transformants was the same. When 100 ng/ml of synthetic $VB-C_6$ was added to the state of 6 or 8 hour cultivation of wild type and transformants, respectively, the virginiamycins production was induced, meaning that the virginiamycins production in the wild type was detected 2 h early than transformants. From these results, SeaR expression was also affected to virginiamycins production in transformants derived from S. virginiae. In this study, we showed that the SeaR protein worked as a repressor in transformants.

Identification of Differentially Expressed Genes Related to Intramuscular Fat Development in the Early and Late Fattening Stages of Hanwoo Steers

  • Lee, Seung-Hwan;Park, Eung-Woo;Cho, Yong-Min;Kim, Sung-Kon;Lee, Jun-Heon;Jeon, Jin-Tae;Lee, Chang-Soo;Im, Seok-Ki;Oh, Sung-Jong;Thompson, J.M.;Yoon, Du-Hak
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.757-764
    • /
    • 2007
  • Marbling of cattle meat is dependent on the coordinated expression of multiple genes. Cattle dramatically increase their intramuscular fat content in the longissimus dorsi muscle between 12 and 27 months of age. We used the annealing control primer (ACP)-differential display RT-PCR method to identify differentially expressed genes (DEGs) that may participate in the development of intramuscular fat between early (12 months old) and late fattening stages (27 months old). Using 20 arbitrary ACP primers, we identified and sequenced 14 DEGs. BLAST searches revealed that expression of the MDH, PI4-K, ferritin, ICER, NID-2, WDNMI, telethonin, filamin, and desmin (DES) genes increased while that of GAPD, COP VII, ACTA1, CamK II, and nebulin decreased during the late fattening stage. The results of functional categorization using the Gene Ontology database for 14 known genes indicated that MDH, GAPD, and COP VII are involved in metabolic pathways such as glycolysis and the TCA cycle, whereas telethonin, filamin, nebulin, desmin, and ACTA1 contribute to the muscle contractile apparatus, and PI4-K, CamK II, and ICER have roles in signal transduction pathways regulated by growth factor or hormones. The final three genes, NID-2, WDNMI, and ferritin, are involved in iron transport and extracellular protein inhibition. The expression patterns were confirmed for seven genes (MDH, PI4-K, ferritin, ICER, nebulin, WDNMI, and telethonin) using real-time PCR. We found that the novel transcription repressor ICER gene was highly expressed in the late fattening stage and during bovine preadipocyte differentiation. This information may be helpful in selecting candidate genes that participate in intramuscular fat development in cattle.

Prognostic Significance of Hes-1, a Downstream Target of Notch Signaling in Hepatocellular Carcinoma

  • Zou, Jing-Huai;Xue, Tong-Chun;Sun, Chun;Li, Yan;Liu, Bin-Bin;Sun, Rui-Xia;Chen, Jie;Ren, Zheng-Gang;Ye, Sheng-Long
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3811-3816
    • /
    • 2015
  • Background: Hairy and enhancer of split 1 (Hes-1) protein is a downstream target of Notch signaling and is a basic helix-loop-helix transcriptional repressor. However, definitive evidence for a role in hepatocellular carcinoma (HCC) cells has not been reported. Here, Hes-1 was revealed to an important component of the Notch signaling cascade in HCC cell lines possessing different potential for lung metastasis. Materials and Methods: RNAi mediated by plasmid constructs was used to analyze the role of Hes-1 in MHCC-97L HCC cells by assessing proliferation, apoptosis, cell migration and matrigel invasion following transfection. Hes-1 protein expression analysis in HCC tissue was also conducted by immunohistochemistry. Results: Our studies revealed that Hes-1 was decreased in HCC cell lines with higher lung metastasis potential at both the mRNA and protein levels. Down-regulation of the Hes-1 gene in MHCC-97L cells resulted in increased cell proliferation, reduced apoptosis and increased migration and invasion. Conclusions: Hes-1 has potential prognostic value in post-surgical HCC patients and may be an independent prognostic indicator for overall survival and tumor recurrence. These findings have important implications for understanding the mechanisms by which Hes-1 participates in tumor proliferation and invasion.

ZNF552, a novel human KRAB/C2H2 zinc finger protein, inhibits AP-1- and SRE-mediated transcriptional activity

  • Deng, Yun;Liu, Bisheng;Fan, Xiongwei;Wang, Yuequn;Tang, Ming;Mo, Xiaoyang;Li, Yongqing;Ying, Zaochu;Wan, Yongqi;Luo, Na;Zhou, Junmei;Wu, Xiushan;Yuan, Wuzhou
    • BMB Reports
    • /
    • v.43 no.3
    • /
    • pp.193-198
    • /
    • 2010
  • In this study, we report the identification and characterization of a novel C2H2 zinc finger protein, ZNF552, from a human embryonic heart cDNA library. ZNF552 is composed of three exons and two introns and maps to chromosome 19q13.43. The cDNA of ZNF552 is 2.3 kb, encoding 407 amino acids with an amino-terminal KRAB domain and seven carboxyl-terminal C2H2 zinc finger motifs in the nucleus and cytoplasm. Northern blotting analysis indicated that a 2.3 kb transcript specific for ZNF552 was expressed in liver, lung, spleen, testis and kidney, especially with a higher level in the lung and testis in human adult tissues. Reporter gene assays showed that ZNF552 was a transcriptional repressor, and overexpression of ZNF552 in the COS-7 cells inhibited the transcriptional activities of AP-1 and SRE, which could be relieved through RNAi analysis. Deletion studies showed that the KRAB domain of ZNF552 may be involved in this inhibition.

Characterization of the Neurospora crassa rcm-1 Mutants (Neurospora crassa rcm-1 돌연변이체의 특성)

  • Kim Sang-Rae;Lee Bheong-Uk
    • Korean Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.246-254
    • /
    • 2005
  • Analysis of the complete genome of Neurospora crassa reveals that at least 19 proteins contain tetratricopeptide repeat (TPR) motifs. One of them shows over $60\%$ homology to Ssn6 of Saccharomyces cerevisiae, a universal repressor that mediates repression of genes involved in various cellular processes. Mutant strains generated by RIP (repeat-induced point mutation) process showed four distinctive vegetative growth patterns and slow growth in various rates. Firstly, a mutant showed denser mycelial growth, yellow, csp, and looked like ropy mutant. Secondly, slower growth, dense mycelial, and conidial phenotype. Thirdly, extremely slower growth and aconidial. And finally, flat, tittle aerial hyphae, acon, and similar with a rco-1 RIP mutant. They are all male-fertile, yet female-sterile and produced little or no perithecium. It seems that various phenotypes were occurred depending upon mostly likely, the degree of RIP. These results indicate that this gene may be involved in several cellular possess during vegetative growth, and asexual and sexual development. Therefore it is pleiotropic. Sequence analysis of cDNA shows that it encodes a putative 102 kDa protein composed of 917 amino acids, and has six introns. It is designated rcm-1 (regulation of conidiation and morphology).

Systematic Target Screening Revealed That Tif302 Could Be an Off-Target of the Antifungal Terbinafine in Fission Yeast

  • Lee, Sol;Nam, Miyoung;Lee, Ah-Reum;Lee, Jaewoong;Woo, Jihye;Kang, Nam Sook;Balupuri, Anand;Lee, Minho;Kim, Seon-Young;Ro, Hyunju;Choi, Youn-Woong;Kim, Dong-Uk;Hoe, Kwang-Lae
    • Biomolecules & Therapeutics
    • /
    • v.29 no.2
    • /
    • pp.234-247
    • /
    • 2021
  • We used a heterozygous gene deletion library of fission yeasts comprising all essential and non-essential genes for a microarray screening of target genes of the antifungal terbinafine, which inhibits ergosterol synthesis via the Erg1 enzyme. We identified 14 heterozygous strains corresponding to 10 non-essential [7 ribosomal-protein (RP) coding genes, spt7, spt20, and elp2] and 4 essential genes (tif302, rpl2501, rpl31, and erg1). Expectedly, their erg1 mRNA and protein levels had decreased compared to the control strain SP286. When we studied the action mechanism of the non-essential target genes using cognate haploid deletion strains, knockout of SAGA-subunit genes caused a down-regulation in erg1 transcription compared to the control strain ED668. However, knockout of RP genes conferred no susceptibility to ergosterol-targeting antifungals. Surprisingly, the RP genes participated in the erg1 transcription as components of repressor complexes as observed in a comparison analysis of the experimental ratio of erg1 mRNA. To understand the action mechanism of the interaction between the drug and the novel essential target genes, we performed isobologram assays with terbinafine and econazole (or cycloheximide). Terbinafine susceptibility of the tif302 heterozygous strain was attributed to both decreased erg1 mRNA levels and inhibition of translation. Moreover, Tif302 was required for efficacy of both terbinafine and cycloheximide. Based on a molecular modeling analysis, terbinafine could directly bind to Tif302 in yeasts, suggesting Tif302 as a potential off-target of terbinafine. In conclusion, this genome-wide screening system can be harnessed for the identification and characterization of target genes under any condition of interest.

Gene Expression of Candidate Genes Involved in Fat Metabolism During In vitro Adipogenic Differentiation of Bovine Mesenchymal Stem Cell (Bovine Mesenchymal Stem Cell의 지방분화를 이용한 지방대사관련 후보 유전자의 발현분석)

  • Kim, Sung-Kon;Kim, Nam-Kuk;Yoon, Du-Hak;Kim, Tae-Hun;Yang, Boo-Keun;Lee, Hyun-Jeong
    • Journal of Animal Science and Technology
    • /
    • v.52 no.4
    • /
    • pp.265-270
    • /
    • 2010
  • Adipogenesis has been one of the most intensely studied models of cellular differentiation. During adipogenesis, differential expression of many adipogenesis related genes lead to profound changes in cellular, morphological, and physiological characteristics of the differentiating cells. The aim of the present study was to examine the expression levels of adipogenic candidate genes, cAMP early repressor (ICER), nephroblastoma over-expressed protein (NOV), heat shock protein beta 1 (HSPB1) and succinate dehydrogenase (SDH), during adipogenesis of bovine mesenchymal stem cells (BMSC). The BMSC were cultured in DMEM / low glucose medium with adipogenic inducers for 6 days and the expression of various candidate genes which seemed related to adipogenesis were measured by real-time PCR. This study showed that the expression of peroxisome proliferator activated receptor ${\gamma}$(PPAR${\gamma}$) and fatty acid binding protein 4 (FABP4) genes as adipogenic indicators were increased to 3.11 and 3.11 folds on day 6 than on day 0, respectively (p<0.05). To determine whether candidate genes were related to adipogenesis, the expression levels of ICER, NOV, HSPB1, and SDH genes were measured during adipogenesis in BMSC. Our results showed that the expression level of ICER gene was significantly increased to 4.12 folds (0.01729 vs. 0.07138; p<0.05), whereas NOV, HSPB1, and SDH genes were decreased to 2.89, 3.18 and 2.36 folds, respectively, on day 6 when compared to day 0. These results suggest that these candidate genes have stimulatory or inhibitory effects on adipogenesis in BMSC, indicating that these genes may be directly or indirectly related to the adipogenic event of adipose precursor cells.

Effects of Dietary Cholesterol on Male Reproductive Tracts by Regulating PCSK9 Gene (콜레스테롤 식이가 Pcsk9 유전자 조절을 통해 남성 생식기관에 미치는 영향)

  • Lim, Whasun;Bae, Hyocheol;Song, Gwonhwa
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.2
    • /
    • pp.113-118
    • /
    • 2016
  • Proprotein convertase subtilisin/kexin type 9 (PCSK9), is a protein mainly secreted by a liver. The PCSK9 plays an important role in low density lipoprotein (LDL) metabolism acting as a repressor of LDL receptor through transportation of the LDLR to the lysosome for degradation. Thus, the PCSK9 inhibitor suppresses PCSK9-regulated degradation of the LDL receptor as a LDL-lowering medicine. However, little is known about the role of PCSK9 in the reproductive system. Therefore, in the present study, we investigated Pcsk9 expression in male reproductive tracts including penises, prostates and testes using rats in response to their diets between a normal diet and a high-fat diet with cholesterol. Based on our previous study, the high-fat diet elevates concentration of total cholesterol and LDL in serum whereas it reduces the concentration of plasma high density lipoprotein (HDL). In addition, it dramatically affects to morphological changes of the male reproductive organs. Consistent with these results, the expression of Pcsk9 was substantially decreased in the penile tissues (P < 0.001) from rats fed a high fat diet as compared to a normal diet. Moreover, it slightly reduced in the prostate and testes (P < 0.05) of rats in response to a high fat diet. Localization of Pcsk9 was predominantly detected in urethral epithelium of penises, cylinder-shaped cells of prostate glands, and spermatogonia, spermatocytes and spermatid of testes of rats. Collectively, results of current study provide invaluable insights into the Pcsk9 gene with respect to its tissue- and cell-specific expression by a high fat diet with cholesterol.

Physiological and molecular characterization of two inbred radish lines with different bolting times (추대시기가 서로 다른 무 계통간 생리학적, 분자생물학적 개화 특성 규명)

  • Park, Hyun Ji;Jung, Won Yong;Lee, Sang Sook;Lee, Joo won;Kim, Youn-Sung;Cho, Hye Sun
    • Journal of Plant Biotechnology
    • /
    • v.42 no.3
    • /
    • pp.215-222
    • /
    • 2015
  • The radish (Raphanus sativus L.) is an important Brassicaceae root vegetable crop worldwide. Several studies have been conducted concerning radish breeding. There are major challenges to prevent premature bolting in spring plantings. Here, we performed the characterization of two inbred radish lines which vary in bolting time. "Late bolting radish" (NH-JS1) and "early bolting radish" (NH-JS2) were generated by a conventional breeding approach. The two inbred lines showed different bolting phenotypes depending on vernalization time at $4^{\circ}C$. NH-JS1, the late bolting radish, was less sensitive to cold treatment and the less sensitivity was inversely proportional to the duration of the vernalization. We also measured gene expression levels of the major bolting time related genes in the NH-JS1 and NH-JS2 lines. RsFLC1 plays a central role in the timing of flowering initiation. It is a strong repressor and it's transcript is highly expressed in NH-JS1 compared to NH-JS2 under no treatment and vernalization conditions. RsFRI, a positive regulator of RsFLC, is also highly expressed in NH-JS1 compared to NH-JS2 regardless of vernalization. In contrast, RsSOC1, suppressed by FLC as a floral integrator gene, showed the most difference, a 5-fold increase, between NH-JS1 and NH-JS2 under vernalization conditions. From these results, we conclude that NH-JS1 showed a late flowering phenotype after cold treatment due to the expression differences of flowering time regulator genes rather than difference sensitivity to cold. These results may be useful to understand the control mechanisms of flowering time and may help identify molecular markers for selecting late bolting trait in radish.