DOI QR코드

DOI QR Code

Identification of Differentially Expressed Genes Related to Intramuscular Fat Development in the Early and Late Fattening Stages of Hanwoo Steers

  • Lee, Seung-Hwan (Animal Genomics & Bioinformatics Division, National Livestock Research Institute, RDA) ;
  • Park, Eung-Woo (Animal Genomics & Bioinformatics Division, National Livestock Research Institute, RDA) ;
  • Cho, Yong-Min (Animal Genomics & Bioinformatics Division, National Livestock Research Institute, RDA) ;
  • Kim, Sung-Kon (Animal Genomics & Bioinformatics Division, National Livestock Research Institute, RDA) ;
  • Lee, Jun-Heon (Division of Animal Science and Resources, Research Center for Transgenic Cloned Pigs, Chungnam National University) ;
  • Jeon, Jin-Tae (Department of Animal science, Kyeongsang National University) ;
  • Lee, Chang-Soo (Department of Applied Biochemistry, Kon-Kuk University) ;
  • Im, Seok-Ki (Animal Genomics & Bioinformatics Division, National Livestock Research Institute, RDA) ;
  • Oh, Sung-Jong (Animal Genomics & Bioinformatics Division, National Livestock Research Institute, RDA) ;
  • Thompson, J.M. (School of Rural Science and Natural Resources, The University of New England) ;
  • Yoon, Du-Hak (Animal Genomics & Bioinformatics Division, National Livestock Research Institute, RDA)
  • Published : 2007.09.30

Abstract

Marbling of cattle meat is dependent on the coordinated expression of multiple genes. Cattle dramatically increase their intramuscular fat content in the longissimus dorsi muscle between 12 and 27 months of age. We used the annealing control primer (ACP)-differential display RT-PCR method to identify differentially expressed genes (DEGs) that may participate in the development of intramuscular fat between early (12 months old) and late fattening stages (27 months old). Using 20 arbitrary ACP primers, we identified and sequenced 14 DEGs. BLAST searches revealed that expression of the MDH, PI4-K, ferritin, ICER, NID-2, WDNMI, telethonin, filamin, and desmin (DES) genes increased while that of GAPD, COP VII, ACTA1, CamK II, and nebulin decreased during the late fattening stage. The results of functional categorization using the Gene Ontology database for 14 known genes indicated that MDH, GAPD, and COP VII are involved in metabolic pathways such as glycolysis and the TCA cycle, whereas telethonin, filamin, nebulin, desmin, and ACTA1 contribute to the muscle contractile apparatus, and PI4-K, CamK II, and ICER have roles in signal transduction pathways regulated by growth factor or hormones. The final three genes, NID-2, WDNMI, and ferritin, are involved in iron transport and extracellular protein inhibition. The expression patterns were confirmed for seven genes (MDH, PI4-K, ferritin, ICER, nebulin, WDNMI, and telethonin) using real-time PCR. We found that the novel transcription repressor ICER gene was highly expressed in the late fattening stage and during bovine preadipocyte differentiation. This information may be helpful in selecting candidate genes that participate in intramuscular fat development in cattle.

Keywords

References

  1. Ailhaud, G.., Grimaldi, P. and Negrel, R. (1992) c. Int. J. Obes. Relat. Metab. Disord. 2, 17-21.
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  3. Anderson, M. S. and Kunkel, L. M. (1992) The molecular and biochemical basis of Duchenne muscular dystrophy. Traends Biochem. Sci. 17, 289-292. https://doi.org/10.1016/0968-0004(92)90437-E
  4. Casimir, D. A. and Ntambi, J. M. (1996) cAMP activates the expression of stearoyl-CoA desaturase gene 1 during early preadipocyte differentiation. J. Biol. Chem. 270, 29847-29853.
  5. Chawla, A., Schwarz, E. J., Dimaculangan, D. D. and Lazar, M. A. (1994) Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 135, 798-800. https://doi.org/10.1210/en.135.2.798
  6. Childs, K. D., Goad, D. W., Allan, M. F., Pomp, D., Krehbiel, C., Geisert, R. D., Morgan, J. B. and Malayer, J. R. (2002) Differential expression of NAT1 translational repressor during development of bovine intramuscular adipocytes. Physiol Genomics. 10, 49-56. https://doi.org/10.1152/physiolgenomics.00095.2001
  7. Hu, E., Tontonos, P. and Spiegelman, B. M. (1995) Transdifferentiation of myoblasts by the adipogenic transcription factor $PPAR_{\gamma}\;and\;C/EBP_{\alpha}$. Proc. Natl. Acad. Sci. USA 92, 9856-9860. https://doi.org/10.1073/pnas.92.21.9856
  8. Hwang, I. T., Kim, Y. J., Kim, S. H., Kwak, C. I., Gu, Y. Y. and Chun, J. Y. (2003) Annealing control primer system for improving specificity of PCR amplification. BioTechniques. 35, 1180-1184.
  9. JMGA (1988) New beef carcass grading standards. Japan Meat Grading Association, Tokyo, Japan.
  10. Kim, Y. J., Kwak, C. I., Gu, Y. Y., Hwang, I. T. and Chun, J. Y. (2004) Annealing control primer system for identification of differentially expressed genes on agarose gels. BioTechniques. 36, 424-434.
  11. Konieczny, S. F. and Emerson, C. P. (1987) Complex regulation of the muscle-specific contractile protein (troponin I) gene. Mol. Cell. Biol. 7, 3065-3075. https://doi.org/10.1128/MCB.7.9.3065
  12. Lee S. M, Jeoung, Y. H., Hwang, S. H., Park, H. Y., Yoon, D. H., Moon, S. J., Chung, E. R. and Kang, M. J. (2005) Differentiation of Hanwoo intramuscular preadipocytes. J. Anim. Sci. Technol. (kor) 47, 913-918. https://doi.org/10.5187/JAST.2005.47.6.913
  13. MacDougald, O. A. and Lane, M. D. (1995) Adipocyte differentiation. When precursors are also regulators. Curr. Biol. 5, 618-621. https://doi.org/10.1016/S0960-9822(95)00125-4
  14. Mayans, O., van der Ven, P. F., Wilm, M. M. A., Young, P., Furst, D. O., Wilmanns, M. and Gautel, M. (1998) Structural basis for activation of the titin kinase domain during Myofibrillogenesis. Nature 395, 863-869. https://doi.org/10.1038/27603
  15. Molina, C. A., Foulkes, N. S., Lalli, E. and Sassone-Corsi, P. (1993) Inducibility and negative autoregulation of CREM: an alternative promoter directs the expression of ICER, an early response repressor. Cell. 75, 875-886. https://doi.org/10.1016/0092-8674(93)90532-U
  16. Moody, W. G. and Cassens, R. G. (1968) Histochemical differentiation of red and white muscle fibers. J. Anim. Sci. 27, 961-968. https://doi.org/10.2527/jas1968.274961x
  17. Nicholas, G., Thomas, M., Langley, B., Somers, W., Patel, K., Kemp, C. F., Sharma, M. and Kambadur, R. (2002) Titin-cap associates with, and regulates secretion of, Myostatin. J. Cell. Physiol. 193, 120-131. https://doi.org/10.1002/jcp.10158
  18. Nishimura, T., Hattori, A. and Takahashi, K. (1999) Structural changes in intramuscular connective tissue during the fattening of Japanese black cattle: effect of marbling on beef tenderization. J. Anim. Sci. 77, 93-104. https://doi.org/10.2527/1999.77193x
  19. Paulin, D. and Li, Z. (2004) Desmin: a major intermediate filament protein essential for the structural integrity and function of muscle. Exp. Cell Res. 301, 1-7. https://doi.org/10.1016/j.yexcr.2004.08.004
  20. Pike, L. J. (2005) Phosphatidylinositol 4-kinases and the role of polyphosphoinositides in cellular regulation. Endocrine Rev. 13, 692-703.
  21. Root, D. D. and Wang, K. (2001) High-affinity actin-binding Nebulin fragments influence the actoS1 complex. Biochemistry 40, 1171-1186. https://doi.org/10.1021/bi0015010
  22. Servillo, G., Fazia, M. A. D. and Sassone-Corsi, P. (2002) Coupling cAMP signaling to transcription in the liver: Pivotal role of CREB and CREM. Exp. Cell Res. 275, 143-153. https://doi.org/10.1006/excr.2002.5491
  23. Stedman, H., Browning, K., Oliver, N., Oronzi-Scott, M., Fischbeck, K., Sarkar, S., Sylvester, J., Schmickel, R. and Wang, K. (1988) Nebulin cDNAs detect a 25-kilobase transcript in skeletal muscle and localize to human chromosome 2. Genomics 2, 1-7. https://doi.org/10.1016/0888-7543(88)90102-4
  24. Tang, Q. Q. and Lane, M. D. (1999) Activation and centromeric localization of CCAAT/enhancer-binding proteins during the mitotic clonal expansion of adipocyte differentiation. Genes Dev. 13, 2231-2241. https://doi.org/10.1101/gad.13.17.2231
  25. USDA (1989) Official united states standards for grades of beef carcases. Agric. Marketing Serv. USDA, Washington, USA.
  26. Wang, Y. H., Byrne, K. A., Reverter, A., Harper, G. S., Taniguchi, M., McWilliam, S. M., Mannen, H., Oyama, K. and Lehnert, S. A. (2005) Transcriptional profiling of skeletal muscle tissue from two breeds of cattle. Mamm Genome. 16, 201-210. https://doi.org/10.1007/s00335-004-2419-8
  27. Weindruch, R., Kayo, T., Lee, C. K. and Prolla, T. A. (2001) Microarray Profiling of gene expression in aging and its alteration by caloric restriction in mice. J. Nutr. 131, 918-923. https://doi.org/10.1093/jn/131.3.918S
  28. Zhou, Y. P., Marlen, K., Palma, J. F., Schweitzer, A., Reilly, L., Gregoire, F. M., Xu, G. G., Blume, J. E. and Johnson, J. D. (2003) Overexpression of repressive cAMP response element modulators in high glucose and fatty acid-treated rat islets. A common mechanism for glucose toxicity and lipotoxicity?. J. Biol. Chem. 278, 51316-51323. https://doi.org/10.1074/jbc.M307972200

Cited by

  1. Functional analysis of muscle gene expression profiles associated with tenderness and intramuscular fat content in pork vol.92, pp.4, 2012, https://doi.org/10.1016/j.meatsci.2012.05.007
  2. Allied Industry Approaches to Alter Intramuscular Fat Content and Composition in Beef Animals vol.75, pp.1, 2010, https://doi.org/10.1111/j.1750-3841.2009.01396.x
  3. Genes involved in muscle lipid composition in 15 EuropeanBos taurusbreeds vol.44, pp.5, 2013, https://doi.org/10.1111/age.12044
  4. Genetic variants and signatures of selective sweep of Hanwoo population (Korean native cattle) vol.46, pp.7, 2013, https://doi.org/10.5483/BMBRep.2013.46.7.211
  5. Beef quality traits of heifer in comparison with steer, bull and cow at various feeding environments vol.86, pp.1, 2015, https://doi.org/10.1111/asj.12266
  6. Comparison of the adipogenesis in intramuscular and subcutaneous adipocytes from Bamei and Landrace pigs vol.92, pp.4, 2014, https://doi.org/10.1139/bcb-2014-0019
  7. Increased intramuscular fat induced by reduced dietary protein in finishing pigs: effects on the longissimus lumborum muscle proteome vol.12, pp.8, 2016, https://doi.org/10.1039/C6MB00213G
  8. Association between the Polymorphism of the Fatty acid binding protein 5 (FABP5) Gene within the BTA 14 QTL Region and Carcass/Meat Quality Traits in Hanwoo vol.53, pp.4, 2011, https://doi.org/10.5187/JAST.2011.53.4.311
  9. Effects of Dietary Multi-nutritional Targeted Supplementation According to Different Growth Stages on Performance and Carcass Characteristics of Hanwoo Steers vol.24, pp.2, 2010, https://doi.org/10.5713/ajas.2011.10202
  10. Phenotypic and genotypic background underlying variations in fatty acid composition and sensory parameters in European bovine breeds vol.5, pp.1, 2014, https://doi.org/10.1186/2049-1891-5-20
  11. The Regulation of Lipolysis in Adipose Tissue vol.55, pp.4, 2013, https://doi.org/10.5187/JAST.2013.55.4.303
  12. Screening, cloning and sequence analysis of the differential expression genes inLongissimus dorsi of Yanbian Yellow Cattle vol.33, pp.11, 2011, https://doi.org/10.3724/SP.J.1005.2011.01219
  13. Global comparison of gene expression profiles between intramuscular and subcutaneous adipocytes of neonatal landrace pig using microarray vol.86, pp.2, 2010, https://doi.org/10.1016/j.meatsci.2010.05.031
  14. Application of gene expression studies in livestock production systems: a European perspective vol.48, pp.7, 2008, https://doi.org/10.1071/EA08018
  15. Molecular cloning and expression profile analysis of porcine TCAP gene vol.37, pp.3, 2010, https://doi.org/10.1007/s11033-009-9577-4
  16. The Effect of Linseed on Intramuscular Fat Content and Adipogenesis Related Genes in Skeletal Muscle of Pigs vol.44, pp.11, 2009, https://doi.org/10.1007/s11745-009-3346-y
  17. Identification of differentially expressed genes in the brain of Sebastiscus marmoratus in response to tributyltin exposure vol.99, pp.2, 2010, https://doi.org/10.1016/j.aquatox.2010.05.002
  18. Gene Co-expression Analysis to Characterize Genes Related to Marbling Trait in Hanwoo (Korean) Cattle vol.26, pp.1, 2013, https://doi.org/10.5713/ajas.2012.12375
  19. Regional Differences of Proteins Expressing in Adipose Depots Isolated from Cows, Steers and Bulls as Identified by a Proteomic Approach vol.29, pp.8, 2016, https://doi.org/10.5713/ajas.16.0051
  20. Intramuscular fat content in meat-producing animals: development, genetic and nutritional control, and identification of putative markers vol.4, pp.02, 2010, https://doi.org/10.1017/S1751731109991091
  21. Association of Heat Shock Protein Beta 1 (HSPB1) Gene Expression with Tenderness in Loin Muscle of Korean Cattle (Hanwoo) vol.22, pp.11, 2012, https://doi.org/10.5352/JLS.2012.22.11.1523
  22. Two completely linked polymorphisms in thePPARGtranscriptional regulatory region significantly affect gene expression and intramuscular fat deposition in the longissimus dorsi muscle of Erhualian pigs vol.44, pp.4, 2013, https://doi.org/10.1111/age.12025
  23. Identification of marbling-related candidate genes in M. longissimus dorsi of high- and low marbled Hanwoo (Korean Native Cattle) steers vol.41, pp.12, 2008, https://doi.org/10.5483/BMBRep.2008.41.12.846
  24. Association of Succinate Dehydrogenase and Triose Phosphate Isomerase Gene Expression with Intramuscular Fat Content in Loin Muscle of Korean (Hanwoo) Cattle vol.22, pp.1, 2012, https://doi.org/10.5352/JLS.2012.22.1.31
  25. A novel genetic variant database for Korean native cattle (Hanwoo): HanwooGDB vol.37, pp.1, 2015, https://doi.org/10.1007/s13258-014-0224-7
  26. Effect of optimal sodium stearoyl-2-lactylate supplementation on growth performance and blood and carcass characteristics in Hanwoo steers during the early fattening period vol.31, pp.9, 2018, https://doi.org/10.5713/ajas.18.0349