• Title/Summary/Keyword: repressor gene

Search Result 90, Processing Time 0.021 seconds

Utilization of lacZ to Isolate Regulatory Genes from Corynebacterium glutamicum

  • KIM, HYUNG-JOON;JOON-SUNG PARK;HEUNG-SHICK LEE;YOUNHEE KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.336-339
    • /
    • 2002
  • A total of 100 Corynebacterial clones exerting a regulatory effect on the aceB promoter of Corynebacterium glutamicum were isolated by utilizing a reporter carrying the enteric lacZ gene fused to the promoter. The isolated clones were classified into 3 groups of A, B, and C, according to their color of colonies. Escherichia coli cells carrying clones in groups A and B showed a $90\%\;and\;50\%$ reduction in ${\beta}$-galactosidase activity, respectively. The introduction of group A clones into C. glutamicum also resulted in an almost complete reduction in the expression of the aceA and aceB genes, suggesting that the clones express repressor-like proteins for the genes. Although white colonies were formed on plates containing X-gal, E. coli cells carrying one of the clones in group C exhibited intact ${\beta}$-galactosidase activity. The result suggests that the clone may encode proteins that prevent the cells from accumulating the chromogenic compound, X-gal.

Indole-3-Carbinol Promotes Goblet-Cell Differentiation Regulating Wnt and Notch Signaling Pathways AhR-Dependently

  • Park, Joo-Hung;Lee, Jeong-Min;Lee, Eun-Jin;Hwang, Won-Bhin;Kim, Da-Jeong
    • Molecules and Cells
    • /
    • v.41 no.4
    • /
    • pp.290-300
    • /
    • 2018
  • Using an in vitro model of intestinal organoids derived from intestinal crypts, we examined effects of indole-3-carbinol (I3C), a phytochemical that has anticancer and aryl hydrocarbon receptor (AhR)-activating abilities and thus is sold as a dietary supplement, on the development of intestinal organoids and investigated the underlying mechanisms. I3C inhibited the in vitro development of mouse intestinal organoids. Addition of ${\alpha}$-naphthoflavone, an AhR antagonist or AhR siRNA transfection, suppressed I3C function, suggesting that I3C-mediated interference with organoid development is AhR-dependent. I3C increased the expression of Muc2 and lysozyme, lineage-specific genes for goblet cells and Paneth cells, respectively, but inhibits the expression of IAP, a marker gene for enterocytes. In the intestines of mice treated with I3C, the number of goblet cells was reduced, but the number of Paneth cells and the depth and length of crypts and villi were not changed. I3C increased the level of active nonphosphorylated ${\beta}$-catenin, but suppressed the Notch signal. As a result, expression of Hes1, a Notch target gene and a transcriptional repressor that plays a key role in enterocyte differentiation, was reduced, whereas expression of Math1, involved in the differentiation of secretory lineages, was increased. These results provide direct evidence for the role of AhR in the regulation of the development of intestinal stem cells and indicate that such regulation is likely mediated by regulation of Wnt and Notch signals.

Effect of Induction Temperature on the $P_L$ Promoter Controlled Production of Recombinant Human Interleukin-2 in Escherichia coli

  • Lee, In-Young;Kim, Myung-Kuk;Lee, Sun-Bok
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.1
    • /
    • pp.26-34
    • /
    • 1992
  • The effect of induction temperature on fermentation parameters has been investigated extensively using Escherichia coli M5248[pNKM21], a producer of recombinant human interleukin-2 (rhIL-2). In this recombinant microorganism, the gene expression of rhIL-2 is regulated by the cI857 repressor and $P_L$ promoter system. The recombinant fermentation parameters studied in this work include the cell growth, protein synthesis, cell viability, plasmid stability, $\beta$-lactamase activity, and rhIL-2 productivity. Interrelationships of such fermentation parameters have been analyzed through a quantitative assessment of the experimental data set obtained at eight different culture conditions. While the expression of rhIL-2 gene was repressed at culture temperatures below $34^\circ{C}$ with little effect on other fermentation parameters, under the conditions of rhIL-2 production $>(36~44^\circ{C})$ the cell growth, plasmid stability, and $\beta$-lactamase activity were, as induction temperature was increased, more profoundly reduced. Although the rhIL-2 content in the insoluble protein fraction was maximum at $40^\circ{C}$, total rhIL-2 production in the culture volume was found to be highest at the induction temperature of $36^\circ{C}$. This was in contrast to the previously known optimum induction temperature of the P$_{L}$ promoter system $>(40~42^\circ{C})$.Explanations for such a discrepancy have been proposed based on a product formation kinetics, and their implications have been discussed in detail.l.

  • PDF

Comparison of Two Feather-Degrading Bacillus Licheniformis Strains

  • Lin, Xiang;Lee, Soo-Won;Bae, Hee Dong;Shelford, Jim A.;Cheng, Kuo-Joan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.12
    • /
    • pp.1769-1774
    • /
    • 2001
  • Bacillus licheniformis strains L-25 and PWD-1 are two thermophilic feather-degrading bacteria. Despite isolated from different environmental conditions, they were both capable of breaking down chicken feathers and growing in a medium in which feather was the only source of carbon and nitrogen. A 1.46-kb keratinase gene (ker B) was isolated from strain L-25 by a polymerase chain reaction (PCR) using L-25 genomic DNA as templates. Sequencing results reveal that ker B shares great sequence identity with a previously published keratinase gene of B. licheniformis PWD-1 (ker A). Only two amino acids differences were found in the deduced amino acid sequence between the keratinases from L-25 and PWD-1. However several nucleotide changes were found upstream of the putative promoter region. Protease inhibition studies indicated that neutral protease activity accounted for approximate 25 to 30% of total extracellular proteolytic activity produced by strain L-25 in the feather medium. In contrast, no measurable neutral protease activity was produced by strain PWD-1 in the feather medium. When glucose (1%), a common catabolic repressor, was added into the feather medium, L-25 was still able to grow and produce keratinase. Strain PWD-1 produced no neutral protease activity and its growth was severely inhibited in the feather medium containing glucose. L-25 produced an enhanced level of keratinase in the feather medium in comparison with PWD-1.

The relationship between the variants in the 5'-untranslated regions of equine chorionic gonadotropin genes and serum equine chorionic gonadotropin levels

  • Liu, ShuQin;Lian, Song;Yang, YunZhou;Fu, ChunZheng;Ma, HongYing;Xiong, ZhiYao;Ling, Yao;Zhao, ChunJiang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.12
    • /
    • pp.1679-1683
    • /
    • 2017
  • Objective: An experiment was conducted to study the association between the single nucleotide polymorphisms (SNPs) in 5'-untranslated regions (5'-UTR) of equine chorionic gonadotropin (eCG) genes and the serum eCG levels. Methods: SNPs in 5'-UTR of eCG genes were screened across 10 horse breeds, including 7 Chinese indigenous breeds and 3 imported breeds using iPLEX chemistry, and the association between the serum eCG levels of 174 pregnant Da'an mares and their serum eCG levels (determined with ELISA) was analyzed. Results: Four SNPs were identified in the 5'-UTR of the $eCG{\alpha}$ gene, and one of them was unique in the indigenous breeds. There were 2 SNPs detected at the 5' end of the $eCG{\beta}$ subunit gene, and one of them was only found in the Chinese breeds. The SNP g.39948246T>C at the 5'-UTR of $eCG{\alpha}$ was associated significantly with eCG levels of 75-day pregnant mare serum (p<0.05) in Da'an mares. Prediction analysis on binding sites of transcription factors showed that the g.39948246T>C mutation causes appearance of the specific binding site of hepatocyte nuclear factor 3 forkhead homolog 2 (HFH-2), which is a transcriptional repressor belonging to the forkhead protein family of transcription factors. Conclusion: The SNP g.39948246T>C at the 5'-UTR of $eCG{\alpha}$ is associated with eCG levels of 75-day pregnant mare serum (p<0.05).

Analysis of the Dual Promoters and the $H_2O$$_2$-responsive Element of the cats Gene Encoding Catalase A in Streptomyces coelicolor

  • Cho, You-Hee;Hahn, Ji-Sook;Roe, Jung-Hye
    • Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.239-244
    • /
    • 2000
  • The cats gene encodes the major catalase in Sreptomyces coelicolor, whose production increases upon H$_2$O$_2$treatment. Besides the previously identified primary promoter (catApl), a minor promoter (catAp2) was newly assigned by S1 nuclease mapping. The catAp2 transcript was observed transiently upon entry into the stationary phase in liquid culture and upon differentiation on solid plates, whereas the level of catApl transcription did not chance significantly during this growth transition. ThecatApl promoter was transcribed by the major vegetative RNA polymerase holoenzyme containing $\sigma$$\^$HrdB/, whereas the catAp2 was transcribed in vitro by the holoenzyme containing $\sigma$$\^$R/ that is activated under oxidative conditions. The cia-element regulating the H$_2$O$_2$-inducibility of catApl was identified within the 23 bp inverted repeat sequence located between -65 and -43 of the catApl promoter. We roamed this sequence HRE (H$_2$O$_2$-responsive Element). The distal half of the inverted repeat was more crucial for H$_2$O$_2$-dependent induction of the catApl transcript than the proximal half. HRE most likely serves as a binding site for the H$_2$O$_2$-responsive repressor CatR.

  • PDF

A Discrete Mathematical Model Applied to Genetic Regulation and Metabolic Networks

  • Asenjo, J.A.;Ramirez, P.;Rapaport, I.;Aracena, J.;Goles, E.;Andrews, B.A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.496-510
    • /
    • 2007
  • This paper describes the use of a discrete mathematical model to represent the basic mechanisms of regulation of the bacteria E. coli in batch fermentation. The specific phenomena studied were the changes in metabolism and genetic regulation when the bacteria use three different carbon substrates (glucose, glycerol, and acetate). The model correctly predicts the behavior of E. coli vis-a-vis substrate mixtures. In a mixture of glucose, glycerol, and acetate, it prefers glucose, then glycerol, and finally acetate. The model included 67 nodes; 28 were genes, 20 enzymes, and 19 regulators/biochemical compounds. The model represents both the genetic regulation and metabolic networks in an integrated form, which is how they function biologically. This is one of the first attempts to include both of these networks in one model. Previously, discrete mathematical models were used only to describe genetic regulation networks. The study of the network dynamics generated 8 $(2^3)$ fixed points, one for each nutrient configuration (substrate mixture) in the medium. The fixed points of the discrete model reflect the phenotypes described. Gene expression and the patterns of the metabolic fluxes generated are described accurately. The activation of the gene regulation network depends basically on the presence of glucose and glycerol. The model predicts the behavior when mixed carbon sources are utilized as well as when there is no carbon source present. Fictitious jokers (Joker1, Joker2, and Repressor SdhC) had to be created to control 12 genes whose regulation mechanism is unknown, since glycerol and glucose do not act directly on the genes. The approach presented in this paper is particularly useful to investigate potential unknown gene regulation mechanisms; such a novel approach can also be used to describe other gene regulation situations such as the comparison between non-recombinant and recombinant yeast strain, producing recombinant proteins, presently under investigation in our group.

A Novel Human BTB-kelch Protein KLHL31, Strongly Expressed in Muscle and Heart, Inhibits Transcriptional Activities of TRE and SRE

  • Yu, Weishi;Li, Yongqing;Zhou, Xijin;Deng, Yun;Wang, Zequn;Yuan, Wuzhou;Li, Dali;Zhu, Chuanbing;Zhao, Xueying;Mo, Xiaoyang;Huang, Wen;Luo, Na;Yan, Yan;Ocorr, Karen;Bodmer, Rolf;Wang, Yuequn;Wu, Xiushan
    • Molecules and Cells
    • /
    • v.26 no.5
    • /
    • pp.443-453
    • /
    • 2008
  • The Bric-a-brac, Tramtrack, Broad-complex (BTB) domain is a protein-protein interaction domain that is found in many zinc finger transcription factors. BTB containing proteins play important roles in a variety of cellular functions including regulation of transcription, regulation of the cytoskeleton, protein ubiquitination, angiogenesis, and apoptosis. Here, we report the cloning and characterization of a novel human gene, KLHL31, from a human embryonic heart cDNA library. The cDNA of KLHL31 is 5743 bp long, encoding a protein product of 634 amino acids containing a BTB domain. The protein is highly conserved across different species. Western blot analysis indicates that the KLHL31 protein is abundantly expressed in both embryonic skeletal and heart tissue. In COS-7 cells, KLHL31 proteins are localized to both the nucleus and the cytoplasm. In primary cultures of nascent mouse cardiomyocytes, the majority of endogenous KLHL31 proteins are localized to the cytoplasm. KLHL31 acts as a transcription repressor when fused to GAL4 DNA-binding domain and deletion analysis indicates that the BTB domain is the main region responsible for this repression. Overexpression of KLHL31 in COS-7 cells inhibits the transcriptional activities of both the TPA-response element (TRE) and serum response element (SRE). KLHL31 also significantly reduces JNK activation leading to decreased phosphorylation and protein levels of the JNK target c-Jun in both COS-7 and Hela cells. These results suggest that KLHL31 protein may act as a new transcriptional repressor in MAPK/JNK signaling pathway to regulate cellular functions.

Role of CopA to Regulate repABC Gene Expression on the Transcriptional Level (전사 수준에서 repABC 유전자 발현을 조절하는 CopA 단백질의 역할)

  • Sam Woong Kim;Sang Wan Gal;Won-Jae Chi;Woo Young Bang;Tae Wan Kim;In Gyu Baek;Kyu Ho Bang
    • Journal of Life Science
    • /
    • v.34 no.2
    • /
    • pp.86-93
    • /
    • 2024
  • Since replication of plasmids must be strictly controlled, plasmids that generally perform rolling circle replication generally maintain a constant copy number by strictly controlling the replication initiator Rep at the transcriptional and translational levels. Plasmid pJB01 contains three orfs (copA, repB, repC or repABC) consisting of a single operon. From analysis of amino acid sequence, pJB01 CopA was homologous to the Cops, as a copy number control protein, of other plasmids. When compared with a CopG of pMV158, CopA seems to form the RHH (ribbon-helix-helix) known as a motif of generalized repressor of plasmids. The result of gel mobility shift assay (EMSA) revealed that the purified fusion CopA protein binds to the operator region of the repABC operon. To examine the functional role of CopA on transcriptional level, 3 point mutants were constructed in coding frame of copA such as CopA R16M, K26R and E50V. The repABC mRNA levels of CopA R16M, K26R and E50V mutants increased 1.84, 1.78 and 2.86 folds more than that of CopA wt, respectively. Furthermore, copy numbers owing to mutations in three copA genes also increased 1.86, 1.68 and 2.89 folds more than that of copA wt, respectively. These results suggest that CopA is the transcriptional repressor, and lowers the copy number of pJB01 by reducing repABC mRNA and then RepB, as a replication initiator.

A novel human KRAB-related zinc finger gene ZNF425 inhibits mitogen-activated protein kinase signaling pathway

  • Wang, Yuequn;Ye, Xiangli;Zhou, Junmei;Wan, Yongqi;Xie, Huaping;Deng, Yun;Yan, Yan;Li, Yongqing;Fan, Xiongwei;Yuan, Wuzhou;Mo, Xiaoyang;Wu, Xiushan
    • BMB Reports
    • /
    • v.44 no.1
    • /
    • pp.58-63
    • /
    • 2011
  • Zinc finger (ZNF) proteins play a critical role in cell growth, proliferation, apoptosis, and intracellular signal transduction. In this paper, we cloned and characterized a novel human KRAB-related zinc finger gene, ZNF425, which encodes a protein of 752 amino acids. ZNF425 is strongly expressed in the three month old human embryos and then is almost undetectable in six month old embryos and in adult tissues. An EGFP-ZNF425 fusion protein can be found in both the nucleus and the cytoplasm. ZNF425 appears to act as a transcription repressor. Over-expression of ZNF425 inhibits the transcriptional activities of SRE, AP-1, and SRF. Deletion analysis indicates that the C2H2 domain is the main region responsible for the repression. Our results suggest that the ZNF425 gene is a new transcriptional inhibitor that functions in the MAPK signaling pathway.