Analysis of the Dual Promoters and the H₂O₂-responsive Element of the *catA* Gene Encoding Catalase A in *Streptomyces coelicolor*

You-Hee Cho, Ji-Sook Hahn and Jung-Hye Roe*

Laboratory of Molecular Microbiology, School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 151-742, Korea

(Received November 23, 2000 / Accepted December 13, 2000)

The catA gene encodes the major catalase in Streptomyces coelicolor, whose production increases upon H_2O_2 treatment. Besides the previously identified primary promoter (catAp1), a minor promoter (catAp2) was newly assigned by S1 nuclease mapping. The catAp2 transcript was observed transiently upon entry into the stationary phase in liquid culture and upon differentiation on solid plates, whereas the level of catAp1 transcription did not change significantly during this growth transition. The catAp1 promoter was transcribed by the major vegetative RNA polymerase holoenzyme containing σ^{HrdB} , whereas the catAp2 was transcribed in vitro by the holoenzyme containing σ^R that is activated under oxidative conditions. The cis-element regulating the H_2O_2 -inducibility of catAp1 was identified within the 23 bp inverted repeat sequence located between -65 and -43 of the catAp1 promoter. We named this sequence HRE (H_2O_2 -responsive element). The distal half of the inverted repeat was more crucial for H_2O_2 -dependent induction of the catAp1 transcript than the proximal half. HRE most likely serves as a binding site for the H_2O_2 -responsive repressor CatR.

Key words: catA, CatR, H₂O₃, dual regulation, H₂O₃-responsive elements, Streptomyces coelicolor

Reactive oxygen species (ROS) are produced from the incomplete reduction of oxygen during aerobic respiration, from exposure to radiation or redox-cycling drugs which undergo autooxidation or from macrophages in response to bacterial invasion. They can lead to damage of almost all cellular components such as DNA, membrane lipids, and proteins, causing cell death and many degenerative diseases (15). Both prokaryotic and eukaryotic cells are equipped with inducible defense systems that counter oxidative damage, but the mechanisms by which cells receive and respond to oxidative stress signals have not been thoroughly elucidated.

The responses induced by oxidative stress in bacteria have been studied predominantly in *Escherichia coli*. These studies have revealed two main oxidative regulons: OxyR regulon against H_2O_2 and SoxRS regulon against superoxide and nitric oxide (30). The induced expression of the OxyR regulon by H_2O_2 results in increased resistance of the cells to H_2O_2 compared with non-induced cells (10). Similarly, the constitutive overexpression of the genes in this regulon results in enhanced resistance to H_2O_2 (9). OxyR has been shown to be a positive regulator that binds to specific regions in the genes of this regulon

The response of *Bacillus subtilis* to H₂O₂ during exponential growth appears to be similar to that in E. coli (1, 11). Upon exposure to H₂O₂, B. subtilis induces DNA damage-responsive genes and a resident prophage (SOS regulon) as well as the katA gene encoding vegetative catalase (2). Additionally, exponentially growing B. subtilis cells demonstrate enhanced protection from killing by H₂O₂, when pretreated with sublethal concentrations of H₂O₂ (1, 3). Chen et al. (5) have postulated that there might exist a negative regulator (PerR), which acts on the conserved element (Per box) initially identified in katA and mrgA genes. PerR has been identified as one of the three E. coli Fur homologues predicted from B. subtilis genome sequence data (4). However, the importance of Per box and the molecular mechanism governed by PerR are currently unknown.

The oxidative response of *Streptomyces coelicolor*, a gram-positive antibiotic-producing bacterium, has been revealed to some extent. *S. coelicolor* produces two kinds of superoxide dismutases whose levels are relatively high to effectively counteract the harmful effects of superoxide anion (22, 23). It also produces multiple catalases (24) encoded by *catA*, *catB*, and *catC* genes (7, 8, 12). The

such as *ahpCF* (encoding an NADPH-dependent alkylhydroperoxidase) and *katG* (encoding hydroperoxidase I) (31). It has been proposed that the redox sensing mechanism of OxyR involves thiol-disulfide exchange (32).

^{*}To whom correspondence should be addressed. (Tel) 82-2-880-6706; (Fax) 82-2-888-4911 (E-mail) jhroe@plaza.snu.ac.kr

240 Cho et al. J. Microbiol.

vegetative catalase (CatA) is believed to play a major role in reducing the amount of H₂O₂ inside the cell as HPI (KatG) does in E. coli. CatB is produced late in the growth phase and is required for proper differentiation and osmotic resistance of S. coelicolor (8). CatC is produced transiently at the late exponential phase (12). CatA is induced by H₂O₂ in liquid culture at the level of transcription. The expression level on surface culture is much higher than that in liquid culture, suggesting more effective oxidative induction on surface culture. Recently we identified an H₂O₂-responsive repressor, CatR, which induces the catA gene in response to H₂O₂ (13, 14). In this paper, we present the evidence on the dual promoter activities of the catA gene and the cis-acting H₂O₂-responsive element (HRE). We propose that this element might be the binding site for CatR repressor.

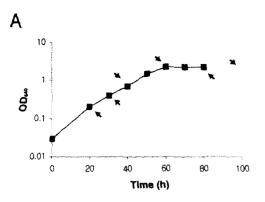
Materials and Methods

Bacterial strains and culture conditions

Growth and maintenance of S. coelicolor A3(2) strains (J1501 and its derivatives) were done essentially as described by Hopwood et al. (16) and Cho (6). Pre-germinated spores (about $10^8 \sim 10^9$ spores/100 ml broth) or 5% seed culture of S. coelicolor cells were inoculated and grown in YEME liquid medium (1% glucose, 0.5% Bacto-peptone, 0.3% malt extract [Difco], 0.3% yeast extract [Difco]) containing 34% sucrose at 30°C with vigorous shaking. The growth rates and phases were determined as described by Cho and Roe (7) by measuring optical density at 640 nm. For plate cultures, 10⁷ pre-germinated spores or patches of mycelia were inoculated on the R2YE agar (10.3% sucrose, 1% glucose, 1.01% MgCl₂, 0.024% K₂SO₄, 0.001% casamino acid [Difco], 0.5% yeast extract, 1.43% [~20 mM] TES [N-tris {hydroxymethyl}methyl-2-aminoethanesulfonic acid], pH 7.0, 20 mM CaCl₂, 0.005% K₂HPO₄, 0.3% proline, and 2% agar) media either overlaid with a cellophane disc or not. The growth rate on solid media was assessed by measuring the amount of mycelium (dry or wet cell weight). The recombinant DNAs were introduced into either E. coli DH5a (27) or into S. lividans TK24 protoplasts (16). To obtain methylation-negative DNA, E. coli ET12567 (25) was used. E. coli cells were grown at 37°C in LB (1% tryptone [Difco], 0.5% yeast extract, and 1% NaCl) supplemented with appropriate antibiotics. TK24 and J1501 cells were grown in YEME liquid medium containing 0.5% and 1.0% glycine, respectively, and protoplasted as described by Hopwood et al. (16).

Preparation of cell extract and protein analyses

Harvested mycelium was suspended in 50 mM potassium phosphate buffer (pH 7.0) containing 1 mM phenylmethylsulfonyl fluoride and disrupted by sonication with


Sonicator ultrasonic liquid processor (Misonix Inc.). The suspension was clarified by centrifugation at 4°C to obtain the supernatant as cell extract. The concentrations of total proteins in cell extracts or partially purified proteins were quantified using Protein assay kit (BioRad). For Western immunoblot analysis, anti-CatA antiserum was raised in mice against the partially purified CatA protein from the CatA-overproducing mutant (HR40) as described previously (8). Catechol dioxygenase XylE activity was assayed in 100 mM potassium phosphate buffer (pH 6.8) containing 2 mM catechol by detecting the increase in absorbance at 375 nm. Changes in optical density per minute were converted directly to enzyme units (17).

Recombinant DNA techniques

pUC18 was used as the general-purpose cloning vector in *E. coli*. For measuring the promoter activity of various promoter mutants in *Streptomyces*, pXE4, a promoter-less *xylE* reporter plasmid (17), and pYC1, a promoter-less *lacZ* reporter plasmid (6), were used. pYC1 was generated by the fusion of pRS415 (28) and SCP2* *replstb* region from pXE4 by *EcoRI/BamHI* digestion. Plasmid DNAs from *E. coli* or from *S. lividans* TK24 were prepared by alkaline lysis. DNA fragments were purified from agarose gels using GeneClean Kit II (BIO101) or by the freeze-squeeze method.

HRE mutant construction by PCR

A series of the deletion and point mutations in catA promoter were generated by PCR. PCR reactions were performed in a thermal cycler (Perkin-Elmer Cetus) for 30 cycles with the following conditions: 94°C for 1 min for denaturation, 50°C for 1 min for annealing, and 72°C for 45 sec for extension. The forward primers are 18~24 nt in length with their 5' boundaries designated in Fig. 2. The reverse primer is 5'-TCG GAG AAG ATC TTC GCG CTG G-3' containing the unique BglII site at +271 of the catA gene. The PCR products were made blunt and initially cloned into the HincII-digested pUC18. The insert was recovered by digestion with HindIII and BglII and was further cloned into the HindIII/BamHI-cut pXE4 or pYC1. pXE42 and pXE45 are pXE4 derivatives containing promoter fragments D2 and D5, whose 5' boundaries are -84 and -38, respectively. TK24 cells containing pXE42 and pXE45 were grown on R2YE plates for 40 h and subjected to XylE enzyme assay (17), pYC43 and pYC44 are pYC1 derivatives containing promoter fragments D3 and D4, whose 5' boundaries are -69 and -54, respectively. pYC43M1 (62AGA to CTC) and pYC43M4 $(47CTAG\Delta)$ contained the indicated base substitutions and deletions within HRE in the pYC43 background. TK24 cells containing pYC1 derivatives were grown in YEME liquid media for 28 h, and subjected to treatment with 100 µM H₂O₂ as described elsewhere (7). The transcripts from the plasmids were assessed by S1 nuclease

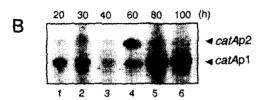


Fig. 1. Production of transcripts from two promoters of the *catA* gene. (A) *S. coelicolor* A3(2) cells were grown in YEME media. The growth was monitored by measuring absorbance at 640 nm. At the indicated time, samples were taken for RNA analysis. Germinated spores were used to inoculate YEME containing 34% sucrose. The doubling time was estimated to be about 11 h. The 60 h culture corresponded to the transition from exponential to stationary phase. (B) The presence and the level of *catA* transcripts were monitored by \$1 nuclease mapping analysis.

mapping as described below.

RNA isolation and S1 nuclease mapping

Mycelial cells at various growth phases were harvested by centrifugation $(6000 \times g)$ at 4°C for 5 min. RNA was isolated using Kirby mix $(1\% \text{ [w/v]} \text{ sodium triisopropyl-naphthalene sulfonic acid, <math>6\% \text{ sodium } 4\text{-amino salicylic}$ acid, 6% [v/v] phenol in 50 mM Tris-HCl [pH 8.0]) as described by Hopwood *et al.* (16). Following extraction with phenol/CHCl₃, the aqueous phase was precipitated with isopropanol and stored at -70°C as precipitates. The probe used for S1 nuclease mapping was prepared by Sall/

Bg/II digestion of the cloned catA gene and radiolabeled uniquely at the 5' end of the Bg/II site (7). The S1 mapping was done as described by Smith and Chater (29). The S1 probe was hybridized with 50 μg of RNA at 50~55°C for more than 6 h. The protected DNA fragments were resolved on 6% polyacrylamide gel containing 7 M urea.

In vitro transcription assay

In vitro transcription assays were done essentially as described by Kang et al. (20) with minor modifications. For in vitro transcription of catAp1 and catAp2, 1.5 pmole of purified core polymerase and 3 to 4 pmole of σ^{BrdB} or σ^{R} protein overproduced and purified from E. coli were used to transcribe 0.2 pmole of 635 bp Sall/Bg/III fragment of catA promoter in 20 μ I standard transcription mixture. Following initiation of transcription, heparin (100 μ g/ml) was added to ensure single-round transcription. Transcripts were analyzed in 5% polyacrylamide gel containing 7 M urea.

Results

The transition phase-specific promoter, catAp2

The catA gene transcripts are primarily derived from the catAp1 promoter at all growth phases. An additional transcript (catAp2) which is 68 nt larger than catAp1 transcript, was observed from cells at a specific growth phase. In liquid culture, it appeared transiently at the late exponential phase (about 60 h following inoculation) and disappeared as cells progressed into the stationary phase (Fig. 1). It appeared also transiently at the onset of differentiation on surface culture (data not shown).

The functional significance of this transient expression of *catAp2* in both liquid and surface cultures is not known yet. However, it seems that the transient increase of *catAp2* transcript, especially on surface culture, may not cause a significant increase of CatA protein, since the level of CatA protein remains rather constitutive during this phase (data not shown).

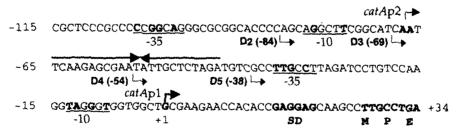
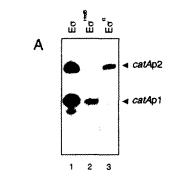
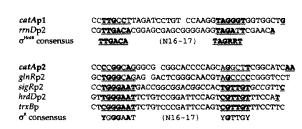



Fig. 2. Nucleotide sequences of the promoter region of catA gene. Putative promoter elements (-35 and -10), ribosome binding site (SD), and the N-terminal codons are presented as well as the transcription start sites (bent arrows) for catAp1 and catAp2 promoters. An inverted repeat sequence of 23 bp (from -65 to -43 nucleotide relative to the catAp1 transcription start site) is observed immediately upstream of the -35 region of the catAp1 promoter. The 5' boundaries of PCR-generated deletion mutants (D2, D3, D4, and D5 from -84, -69, -54, and -38, respectively) for the catAp1 promoter analysis are indicated with their 5' end positions marked.


242 Cho et al. J. Microbiol.

Transcription of catAp1 and catAp2 promoters in vitro

The transcription start sites for catAp1 and catAp2 transcripts determined by high-resolution S1 nuclease mapping (7, data not shown) are shown in Fig. 2. Putative promoter elements for each promoter were marked (see Fig. legend). To identify the sigma factors recognizing each promoter, we performed in vitro transcription analysis using different sigma factors. As demonstrated in Fig. 3A, we observed that catAp1 transcript was generated by EoHrdB, whereas catAp2 transcript was generated by $E\sigma^R$ (Fig. 3A). The *catAp1* promoter elements resemble the consensus sequence recognized by the major sigma factor (σ^{HrdB}) , consistent with this result (Fig. 3B). The promoter elements of catAp2 partially match the consensus sequence recognized by σ^{R} (19) as shown in Fig. 3B. Whether the transcription of catAp2 is dependent on σ^R in vivo was tested using a sigR deletion mutant J2139. The catAp2 transcript was still observed in sigR mutant (data not shown), suggesting that the in vitro recognition by σ^R could result from the relaxed specificity of binding to the catAp2 promoter and/or that some other σ^R -like factor(s) could compensate for the absence of σ^R in vivo. Since there are about 15 σ^R -like sigma factors in S. coelicolor (M.-Y. Hahn, personal communications), we think that the latter possibility is more likely.

В

Fig. 3. Transcription of *catA*p1 and *catA*p2 in vitro. (A) *catA* promoter fragment was incubated with purified *S. coelicolor* RNA polymerase holoenzyme containing mixtures of various sigma factors (Es; lane 1), purified core enzyme plus σ^{HrdB} (E σ^{HrdB} ; lane 2), or core enzyme plus σ^{R} (E σ^{R} ; lane 3). *In vitro* transcription assay was done as described in Materials and Methods. (B) The putative promoter elements of *catA*p1 and *catA*p2 promoters were compared with the consensus and representative promoter elements recognized by σ^{HrdB} and σ^{R} , respectively (20).

HRE, the cis-acting element for H_2O_2 -induction of catAp1 promoter

It has been speculated that an inverted repeat structure immediately upstream of the -35 box of *catA*p1 is the site responsible for H₂O₂-induction of the *catA*p1 promoter by binding H₂O₂-responsive CatR repressor (14). We tested this proposal by using *xylE* reporter plasmids containing various lengths of *catA*p1 promoter. Catechol dioxygenase activity derived from pXE42 and pXE45 plasmids containing promoter regions up to -84 and -38 nucle-

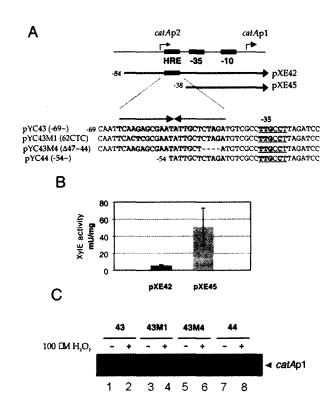


Fig. 4. Effect of HRE mutations in vivo. (A) Schematic presentation of various catA promoter variants cloned in reporter plasmids. As indicated in Fig. 2, four deletion mutants (D2, D3, D4, and D5) were created by PCR. D2 (from -84 to +271) and D5 (from -38 to +271) were fused to the promoter-less xylE gene in pXE4 plasmid to create pXE42 and pXE45, respectively. D3 and D4 were fused to the promoter-less lacZ gene in pYC1 plasmid to create pYC43 and pYC44. From pYC43, a triplet transversion converting AGA to CTC at -62 nt position and a 4-nucleotide deletion from -47 to -44 within the inverted repeat sequence were further created, resulting in pYC43M1 and pYC43M4, respectively. (B) Catechol dioxygenase activity from pXE42 and pXE45 plasmids. S. lividans TK24 cells transformed with pXE42 or pXE45 were grown on R2YE plates containing 50 µg/ml thiostrepton for 40 h. Cell extracts were assayed for catechol dioxygenase activity. Data are an average of three independent experiments with standard error bars. (C) Effect of HRE mutations on the H2O2-inducibility of catAp1 expression. pYC1-derived plasmids (pYC43, pYC43M1, pYC43M4, or pYC44) were introduced into TK24 cells. Transformants grown to the mid-exponential growth phase in YEME liquid media were treated with either 100 µM H₂O₂ for 1 h (lanes 2, 4, 6, and 8) or nothing (lanes 1, 3, 5, and 7). Transcripts were analyzed by S1 nuclease mapping.

otides, respectively, was measured (Fig. 4A, B). The observation that the deletion of the region between -84 and -39 increased the promoter activity suggested that the region contains a negative regulatory element. Assuming that the 23 bp inverted repeat structure (HRE, H₂O₂-responsive element) within this region might be a putative repressor binding site, we created several deletion or transversion mutants within HRE as shown in Fig. 4A. pYC1 derivatives, lacZ-reporter plasmids containing various catA promoter variants, were generated. S. lividans TK24 cells transformed with these plasmids were grown in liquid culture. Prior to cell harvesting, the culture was treated with 100 μM H₂O₂ for 1 h for induction of catAp1 transcription. The transcript level was analyzed by S1 mapping. As demonstrated in Fig. 4C, deletion up to -69 (pYC43) had no effect on catA transcription, whereas the introduction of triplet transversion (pYC43M1) caused derepression of catA transcription in the absence of H₂O₂ treatment (lane 3). Unexpectedly, an internal 4-bp deletion in the proximal half of the inverted repeat (pYC43M4) did not produce any effect. The entire deletion of the distal half (pYC44) caused dramatic derepression (lane 7). More than 10-fold increase in the amount of derepression in pYC44 compared with pYC43M1 suggests that CatR may bind partially to the HRE site of the M1 mutation, having lost its ability to respond to H₂O₃. These results suggest that the distal half of the inverted repeat plays a critical role in the repression via HRE.

Discussion

Dual promoter regulation of catA

The induction by H₂O₂ and the persistent expression of catA in the stationary phase parallels the behavior of E. coli katG and B. subtilis katA gene expressions. The transcription of B. subtilis katA has been reported to increase in the stationary phase by more than 5-fold, being affected by spoOA locus (3). Likewise, E. coli katG is under the control of RpoS in the stationary phase (18). Analogous with E. coli katG being dependent on OxyR and RpoS and with B. subtilis katA being PerR- and Spo0A-dependent, catA may be subjected to the regulation by CatR in response to H₂O₂ and by unknown stationary phase-specific factors. In this study we found that the catA gene contains two promoters that are recognized by different sigma factors. The major promoter is catAp1 that is induced by H₂O₂ or hyperoxic conditions as encountered in the plate culture, and the minor one is catAp2 that is transiently expressed upon entry into the stationary phase.

The biological significance of this second promoter is currently unknown. It may reflect the condition where some transient disulfide stress is experienced during the transition period, activating the σ^R factor (21, 26). Further studies are necessary to elucidate this possibility.

HRE, a cis-acting negative regulatory element for H_2O_2 response

We previously identified the catR gene encoding an E. coli Fur-like protein and a functional homologue of B. subtilis PerR (13, 14). It represses the catAp1 transcription in the absence of H₂O₂. The purified CatR protein binds specifically to the catAp1 promoter fragment only under a reducing condition (14). Similar sequences of dyad symmetry have been identified in both catAp1 and catRp2 promoter regions, being proposed as the binding site of CatR. In this study, we experimentally verified the cis-acting element responsible for H₂O₂, inducibility within the catA promoter region. This dyad symmetry, called H₂O₂responsive element (HRE), is located between -65 and -43 nucleotide from the catAp1 transcription start site. In B. subtilis, an AT-rich inverted repeat sequence was suggested to be the Per box, based on point mutation analyses and the compilation of several genes regulated by PerR. It has been shown to mediate the repression in reducing conditions (5). The position of Per box at katA and mrgA promoters is similar to that of HRE at catAp1 promoter. We further demonstrated that the distal half of the HRE symmetry is more important for correct binding than the proximal half, in contrast to the finding in B. subtilis where the proximal region of Per box is also important in the repression of mrgA gene (5). These results lead us to the conclusion that the CatR protein may regulate the catA gene through binding to HRE, whose distal half provides a more crucial binding site to interact with CatR.

Molecular mechanism for H_2O_2 response in S. coelicolor In E. coli, the positive regulator OxyR acts in response to H₂O₃. The pre-existing reduced form of OxyR protein is directly activated by an oxidative signal, in a protein thioldependent manner, stimulating the transcription of target promoters. The signal involves a disulfide bond formation between cysteine 199 and cysteine 208 near the C-terminus, which can be reversibly reduced by glutaredoxin for homeostasis (32). The molecular mechanism behind the expression of B. subtilis katA in response to H₂O₂ has not been fully characterized, except that PerR is the key regulator. S. coelicolor responds to H₂O₂ by forming a disulfide bond in CatR which then loses its ability to bind to the target site (14). Our current study suggests that the HRE, especially the distal site, provides optimal binding sites for CatR. The different behavior of base substitutions compared with the deletions in the half site will provide clues to elucidate the molecular mechanism for CatR-HRE interaction.

Acknowledgments

We are indebted to J.-B. Bae for his technical assistance with protein purification and to M.-Y. Hahn for help with *in vitro* transcription assay. We are particularly thankful to Dr. J.-G. Kang for helpful discussions.

This work was supported by the basic research grant 1999-2-202-002-5 from the Korea Science and Engineering Foundation. Y.-H. Cho was supported by BK21 Postdoctoral Fellowship from the Korean Ministry of Education.

References

- Bol, D.K. and R.E. Yasbin. 1990. Characterization of an inducible oxidative stress system in *Bacillus subtilis*. *J. Bacteriol*. 172, 3503-3506.
- Bol, D.K. and R.E. Yasbin. 1991. The isolation, cloning and identification of a vegetative catalase gene from *Bacillus sub*tilis. Gene 109, 31-37.
- Bol, D.K. and R.E. Yasbin. 1994. Analysis of the dual regulatory mechanisms controlling expression of the vegetative catalase gene of *Bacillus subtilis*. J. Bacteriol. 176, 6744-6748.
- Bsat, N., A. Herbig, L. Casillas-Martinez, P. Setlow, J.D. Helmann. 1998. *Bacillus subtilis* contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. *Mol. Microbiol.* 29, 189-98.
- Chen, L., L. Keramati, and J.D. Helmann. 1995. Coordinate regulation of *Bacillus subtilis* peroxide stress genes by hydrogen peroxide and metal ions. *Proc. Natl. Acad. Sci. USA* 92, 8190-8194.
- Cho, Y.-H. 1999. Gene expression and the role of catalases in Streptomyces coelicolor A3(2). Ph.D. thesis. Seoul National University. Korea.
- Cho, Y.-H. and J.-H. Roe. 1997. Isolation and expression of the catA gene encoding the major vegetative catalase in Streptomyces coelicolor Müller. J. Bacteriol. 179, 4049-4052.
- Cho, Y.-H., E.-J. Lee, and J.-H. Roe. 2000. A developmentally regulated catalase required for proper differentiation and osmoprotection of *Streptomyces coelicolor. Mol. Microbiol.* 35, 150-160.
- Christman, M.F., R.W. Morgan, F.S. Jacobson, B.N. Ames. 1985. Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in *Salmonella typh*imurium. Cell 41:753-762.
- Demple, B. and J. Halbrook. 1983. Inducible repair of oxidative DNA damage in *Escherichia coli. Nature* (London) 304, 466-468.
- 11. Dowds, B.C.A., P. Murphy, D.J. McConnell, and K.M. Devine. 1987. Relationship among oxidative stress, growth cycle, and sporulation in *Bacillus subtilis*. *J. Bacteriol*. 169, 5771-5775.
- Hahn, J.-S., S.-Y. Oh, and J.-H. Roe. 2000. Regulation of the furA and catC operon, encoding a ferric uptake regulator homologue and catalase-peroxidase, respectively, in Streptomyces coelicolor A3(2). J. Bacteriol. 182, 3767-3774.
- Hahn, J.-S., S.-Y. Oh, K.F. Chater and J.-H. Roe. 2000. Isolation of the regulator gene responsible for overproduction of catalase A in H₂O₂-resistant mutant of *Streptomyces coelicolor*.
 J. Microbiol. 38, 18-23.
- Hahn, J.-S., S.-Y. Oh, K.F. Chater and J.-H. Roe. 2000. H₂O₂sensitive Fur-like repressor CatR regulating the major catalase
 gene in *Streptomyces coelicolor*. J. Biol. Chem. 275, 3825438260.
- Halliwell, B. and J.M.C. Gutteridge. 1989. Free radicals in biology and medicine. Clarendon Press, Oxford, England.

- Hopwood, D.A., M.J. Bibb, K.F. Chater, T. Kieser, C.J. Bruton, H.M. Kieser, D.J. Lydiate, C.P. Smith, J.M. Ward, and H. Schrempf. 1985. Genetic Manipulation of *Streptomyces*, a Laboratory Manual. Norwich: The John Innes Foundation.
- Ingram, C., M. Brawner, P. Youngman, and J. Westpheling.
 1989. xylE functions as an efficient reporter gene in Streptomyces spp.: use for the study of galP1, a catabolite-controlled promoter. J Bacteriol. 171, 6617-6624.
- Ivanova, A, C. Miller, G. Glinsky, and A. Eisenstark. 1994.
 Role of rpoS (katF) in oxyR-independent regulation of hydroperoxidase I in Escherichia coli. Mol. Microbiol. 12, 571-578.
- Kang, J.-G. 1998. Characterization of RNA polymerase from *Streptomyces coelicolor* A3(2). Ph.D. Thesis. Seoul National University, Korea.
- Kang, J.-G., M.-Y. Hahn, A. Ishihama, and J.-H. Roe. 1997.
 Identification of sigma factors for growth phase-related promoter selectivity of RNA polymerases from *Streptomyces coelicolor* A3(2). *Nucl. Acids Res.* 25, 2566-2573.
- Kang, J.-G., M.S.B. Paget, Y.-J. Seok, M.-Y. Hahn, J.-B. Bae, J.-S. Hahn, C. Kleanthous, M.J. Buttner, and J.-H. Roe. 1999. RsrA, an anti-sigma factor regulated by redox change. *EMBO J.* 18, 4292-4298.
- Kim, E.-J., H.-J. Chung, B. Suh, Y.-C. Hah, and J.-H. Roe. 1998. Transcriptional and post-transcriptional regulation by nickel of sodN gene encoding nickel-containing superoxide dismutase from Streptomyces coelicolor Müller. Mol. Microbiol. 27, 187-195.
- Kim, E.-J., H.-J. Chung, B. Suh, Y.-C. Hah, and J.-H. Roe. 1998. Expression and regulation of the *sodF* gene encoding iron- and zinc-containing superoxide dismutase in *Streptomy*ces coelicolor Müller. J. Bacteriol. 180, 2014-2020.
- Kim, H.-P., J.-S. Lee, Y.-C. Hah, and J.-H. Roe. 1994. Characterization of the major catalase from *Streptomyces coelicolor* ATCC 10147. *Microbiology* 140, 3391-3397.
- MacNeil, D.J. 1988. Characterization of a unique methyl-specific restriction system in *Streptomyces avermitilis*. J. Bacteriol. 170, 5607-5612.
- Paget, M.S., J.-G. Kang, J.-H. Roe, M.-J. Buttner. 1998. σ^R, an RNA polymerase sigma factor that modulates expression of the thioredoxin system in response to oxidative stress in *Strep*tomyces coelicolor A3(2). EMBO J. 17, 5776-5782.
- Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.
- Simons, R.W., F. Houman, and N. Kleckner. 1987. Improved single and multicopy *lac*-based cloning vectors for protein and operon fusions. *Gene* 53, 85-96.
- Smith, C.P. and K.F. Chater. 1988. Structure and regulation of controlling sequences for the *Streptomyces coelicolor* glycerol operon. *J. Mol. Biol.* 204, 569-580.
- Storz, G. and J.A. Imlay. 1999. Oxidative stress. Curr. Opi. Microbiol. 2, 188-194.
- 31. Tartaglia L.A., G. Storz, and B.N. Ames. 1989. Identification and molecular analysis of *oxyR*-regulated promoters important for the bacterial adaptation to oxidative stress. *J. Mol. Biol.* 210, 709-719.
- 32. Zheng, M., F. Åslund, and G. Storz. 1998. Activation of the OxyR transcription factor by reversible disulfide bond formation. *Science* 279, 1718-1721.